|
||||
|
БЮРО МИНИ-ИНФОРМАЦИИ "СОКРАТ" работает на стане Современный прокатный стан — сложнейшая система, состоящая из множества механизмов, при работе которых время от времени могут возникать те или иные неполадки. При этом десятки лампочек на пульте управления станом почти одновременно сигнализируют оператору о возникших отклонениях от нормального хода процесса. Но как выделить среди многочисленных сигналов тот, что оповещает о первопричине нарушения или аварии? Работники Государственного института "Тяжпромэлектропроект" Минмонтажспецстроя СССР создали специальную систему диагностики неисправностей прокатного стана и испытали ее в промышленных условиях на стане 2000 Череповецкого металлургического завода. Контроль за работой этого стана осуществляет ЭВМ, неусыпно следящая за состоянием пяти тысяч ответственных точек агрегата. Если возникает аварийная ситуация, от соответствующих датчиков в ЭВМ начинают поступать сигналы "отказов", которые "электронный мозг" регистрирует с интервалом 0,01 секунды и с помощью пишущей машинки фиксирует на бумажной ленте. Теперь уже оператору достаточно нескольких минут, чтобы точно установить причину опасности. Уметь быстро найти неполадки — это хорошо, но еще лучше устранить всякую вероятность возникновения подобных ситуаций. Вот почему инженеры "Тяжпромэлектропроекта" разработали для того же стана новую профилактическую систему, которой они дали звучное имя "СОКРАТ": система обегающего контроля и регистрации аварийных температур."СОКРАТ" должен надежно оберегать прокатный стан от всех "болезней" — температура стана всегда будет нормальной. Биологи в прокатном цехе Казалось бы, биологи могут находиться в прокатном цехе только в роли экскурсантов. Иного мнения придерживаются работники Института ботаники АН УССР и Ждановского металлургического завода имени Ильича, которых связывает давнее и плодотворное сотрудничество. Неужели у биологов и металлургов есть общие проблемы? Как выяснилось, есть. Известно, что прокатные станы в процессе работы не могут обходиться без смазочно-охлаждающих эмульсий, в состав которых входят нефтепродукты — любимое "лакомство" многих микроорганизмов. В результате их "подрывной деятельности" эмульсии быстро теряют свои "деловые качества" и нуждаются в замене. А нельзя ли умерить аппетит этих "гурманов"? Поставив перед собой такую задачу, ученые Института ботаники начали кропотливые исследования в цехе холодной прокатки завода. Им удалось создать антимикробный препарат, который не только улучшил свойства смазочно-охлаждающих эмульсий и снизил их расход, но и позволил повысить качество прокатываемого металла. "Луноход" в мартене Работники Челябинского металлургического завода создали оригинальный электротрактор, предназначенный для механизации трудоемких работ при ремонте мартеновских печей. Эта небольшая маневренная машина на гусеничном ходу с дистанционным управлением обладает высокой "проходимостью" по боровам и поднасадочным пространствам печей и прекрасно справляется с их очисткой. Электротрактор владеет и другой "профессией": ловко разгружает вагоны с сыпучими материалами. Взяв в свой ковш порцию груза, он перебрасывает ее через себя на транспортное средство. Каждая такая машина позволяет высвободить десять огнеупорщиков. В цехе ремонта металлургических печей завода уже несколько "луноходов" — так в шутку прозвали свое детище челябинские металлурги. Дождь в цехе Как известно, воздух у сталеплавильных или термических печей не совсем такой как, скажем, в сосновом бору или дубовой роще. Нет той прохлады, да и пыли больше, чем хотелось бы. Вполне понятно, что вопрос улучшения "климата" металлургических цехов не сходит с повестки дня. Интересное решение предложили американские специалисты. По их проекту смонтированное над печью устройство периодически, по заданной программе, выбрасывает из сопел тонкие струйки воды. Вода тут же распыляется на мельчайшие капельки, которые "собирают" пыль, образуя при этом облако тумана. За счет тепла горячего воздуха в помещении капельки быстро испаряются, а сам воздух при этом охлаждается. Предложенная система значительно удобнее и эффективнее, чем обычная вентиляция. Домна выплавляет… нефть Давно уже ведутся разговоры о том, что доменная печь устарела и пора переходить к бездоменной металлургии — прямому получению железа из руд. А "старушка" домна, словно не желая сходить со сцены, демонстрирует все новые и новые свои возможности. Недавно, например, венгерские инженеры решили использовать доменную печь для. утилизации старых автомобильных покрышек. Идея заключалась в том, чтобы предоставить возможность резине разлагаться без доступа воздуха. Для этого шины "шинковали", а затем окунали в расплавленный чугун, находящийся в печи. Высокая температура и металлический "плен" — прекрасные условия для разложения резины: в результате образуются газообразные углеводороды и твердый остаток, который с успехом выступает в роли топлива и восстановителя, позволяя тем самым снизить расход кокса. А в промывной воде аппаратов газоочистки при этом в немалом количестве накапливается. искусственная нефть, точнее, органическая жидкость, близкая к ней по составу. Добавим, что стальная "арматура" покрышек — корд, расплавляясь в чугуне и смешиваясь с ним, повышает выход металла. В течение трех лет эту оригинальную идею проверяли на одном из крупных металлургических предприятий. Домна, "в рацион" которой добавляли резиновую "подкормку", работала вполне удовлетворительно, выплавляя чугун и "нефть". Ученым пока еще не удалось до конца решить проблему извлечения органической жидкости из промывных вод, но, как говорится, и Москва не сразу строилась. Еще одна профессия На побережье Токийского залива недалеко от Токио начала действовать автоматическая установка для переработки мусора. До недавнего времени основная масса промышленных и бытовых отходов столицы Японии (а их ежесуточный "приход" составляет примерно 17 тысяч тонн) сбрасывалась на дно залива в специально отведенной для этого акватории. Однако, по подсчетам ученых, акватория уже к 1986 году окажется переполненной мусором. Это побудило специалистов искать другой выход из положения. Новая установка по сути дела представляет собой доменную печь (высотой 18 метров и максимальным диаметром 3 метра), куда загружаются как горючие, так и негорючие отходы, смешанные с коксом и известняком. В печи эта "шихта" нагревается потоками горячего воздуха (1500–1800 °C), что приводит к разложению пластмассовых отходов (в частности, полиэтиленовой тары) и превращению их в горючие газы, которые тут же используются в качестве дополнительного топлива. Под действием высокой температуры несгоревшие отходы расплавляются и в жидком состоянии скапливаются в нижней части печи. При этом стеклянная тара превращается в шлак, пригодный для использования в производстве асфальта и бетона. Консервные банки, провода, лом черных металлов отправляют для переплавки на металлургические предприятия. Пока установка успевает перерабатывать лишь 40 тонн мусора в сутки. Высока еще и стоимость переработки вследствие применения кокса и извести. Домна вырабатывает… электроэнергию Специалисты японской фирмы "Кавасаки Стил Корпорейшн" "заставили" работать выходящие из доменной печи газы, давление которых в полтора — три с половиной раза выше атмосферного. Газы приводят в действие установленный рядом с печью газотурбинный электрогенератор. В результате доменная печь не только выплавляет чугун, но и вырабатывает электроэнергию, что, разумеется, дает большой экономический эффект. Излишки — в дело Шведская фирма "Вокснанс крафт" строит тепловую электростанцию мощностью 10 мегаватт, которая будет работать на доменном газе. Электростанция сооружается рядом с действующей доменной печью, выплавляющей ежегодно 270 тысяч тонн чугуна. Пока отходящий доменный газ частично используется здесь для нагрева дутья, а оставшаяся часть сжигается. Именно эти излишки газа и намечено пустить в дело для приведения в действие паровой турбины с электрогенератором. Металлургия комфорт Зеленые пальмы, золотистые рыбки в красивом бассейне, звонкие рулады птиц. И все это не в холле Дворца культуры или санатория, а в одном из помещений Металлургического предприятия. Не удивляйтесь: речь идет о машинном зале труболитейного цеха Липецкого металлургического завода "Свободный Сокол". Еще недавно трубы здесь отливали на громоздких карусельных машинах. В цехе постоянно висели облака пыли, стоял грохот, загазованность не желала укладываться ни в какие нормы. Без остановки цеха была проведена его реконструкция: карусельные машины заменены более современными центробежными, спроектированными работниками завода. Теперь в цехе чистота, не характерная, прямо скажем, для металлургического производства. А в машинном зале, откуда поступает масло в центробежные машины, появились пальмы, золотые рыбки, певчие птицы. Уютно и в красном уголке цеха: красивая мягкая мебель, интересно оформленные стенды, киноустановка. Удобны и эстетичны бытовые помещения, стенды душевых сверкают кафелем. Такие отличные условия встретишь не во всяком доме отдыха. Раньше в цехе наблюдалась текучесть кадров, теперь же поступить сюда непросто, желающих много, а вакансий мало. Там, где труд в радость, высоки и производственные показатели. Не случайно вся продукция цеха отмечена Знаком качества. На заводе уже побывало немало гостей из разных стран. Мнение всех едино: "Цех прекрасен!". Клады в футеровке Исследуя с помощью тонких аналитических методов старую футеровку медеплавильных печей, болгарские ученые — сотрудники Института цветных металлов в Пловдиве — обнаружили, что отслужившие свой век огнеупорные кирпичи хранят ценные клады: в тысяче тонн обломков футеровки содержится около 50 тонн меди, 91 килограмм серебра и 4 килограмма золота. Медь и благородные металлы, которые в небольших количествах присутствуют в медной руде, проникают в микропоры кирпичей в процессе плавки, а при смене футеровки оказываются на свалке. Но как овладеть этими кладами? Ученые разработали технологию "добычи" металлов из старой футеровки путем флотации. Новый метод, внедренный на металлургическом заводе имени Георгия Димитрова в Елисейне, позволяет извлечь из огнеупорных отходов до 90–93 % содержащихся в них ценных металлов. Металлические "стекла" Как известно, металлы и другие твердые вещества обычно имеют кристаллическую структуру, при которой их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке. Однако некоторым твердым телам этот порядок "не по душе". Таково, например, стекло: оно аморфно и в жидком, и в твердом состояниях. А нельзя ли аморфные металлические расплавы заставить переходить в твердое, но тоже аморфное состояние, т. е. получать металлическое "стекло"? Обычно процесс кристаллизации протекает во времени, и атомы поэтому имеют возможность "поразмыслить" над тем, как вести себя в ходе перестройки. А если осуществить мгновенное затвердевание и, таким образом, не дать атомам времени на "размышление"? На помощь решено было призвать глубокий вакуум и криогенные температуры. При таких условиях атомы вынуждены, как при знакомой всем с детства игре, моментально подчиниться команде: "Замри!". В ходе многочисленных экспериментов удалось довести скорость охлаждения расплава до миллиона градусов в секунду. Пары металла наносили на переохлажденную металлическую пластинку, находящуюся в камере, где были обеспечены указанные условия, и пластинка тут же покрывалась "стеклянной" пленкой. Одним из первых металлов, полученных в аморфном состоянии, был висмут. Оказалось, что пленка "стеклянного" висмута толщиной всего в несколько микрон обладает своеобразными магнитными и электрическими свойствами. Так, даже при обычной температуре ее сопротивление электрическому току во много раз ниже, чем у кристаллического висмута. В дальнейшем круг аморфных металлов и сплавов значительно расширился: ученые сумели превратить в "стекло" сталь и ряд тугоплавких металлов. К тому же значительно упростилась технология получения таких необычных материалов: отпала необходимость в вакууме и криогенных температурах. Как выяснилось, аморфные пленки и ленты образуются при соприкосновении металлического расплава с быстро вращающимися водоохлаждаемыми валками. По следам пули В США разработан химический метод определения траектории полета пули, предназначенный для криминалистики. Летящая пуля оставляет за собой вихревой поток, в который из самой пули и пороховых газов всасываются микроколичества некоторых элементов — свинца, бария, сурьмы, меди. Оседая на землю, пол или другую поверхность, они оставляют на ней невидимый след. Невидимый? Оказывается, современная наука позволяет увидеть его, а значит, и узнать направление полета пули. На обследуемую поверхность накладывают полости влажной фильтровальной бумаги, затем их помещают в ядерный реактор и подвергают бомбардировке нейтронами. Вследствие "обстрела" некоторые атомы, прихваченные бумагой, превращаются в радиоактивные изотопы, а степень их активности дает возможность судить о содержании этих элементов в пробах и, таким образом, определять траекторию и длину полета пули, характеристику самой пули и даже примененного преступником оружия. К сожалению, у нового метода есть существенный недостаток: следы полета пули, оставляемые на земле, быстро исчезают. "Память" сплавов Один из героев романа "Колеса", написанного американским писателем Артуром Хейли, ответственный работник крупной автомобильной компании, делится с журналистами перспективными планами: "Новое, несомненно, будет пробивать себе дорогу… И самые важные новшества, которые уже можно предвидеть, будут связаны с материалами. Возьмите, к примеру, металлы. На смену стальной конструкции, которая используется сейчас, придет сотовая. Она будет более прочной, более упругой и в то же время несравненно более легкой… Кроме того, ведутся работы над созданием такого металла, который обладал бы способностью "запоминать" свою первоначальную форму. Если, например, вы погнете крыло или дверцу, достаточно будет подвергнуть эту деталь высокотемпературной обработке, и металл восстановится в своей прежней форме". Еще каких-нибудь полтора-два десятка лет назад подобную идею можно было отнести разве что к разряду научно-фантастических. Сегодня же свойство металла проявлять "память" достаточно хорошо известно ученым и конструкторам. Что же произошло за это время? В середине 60-х годов в США был запатентован сплав никеля (55 %) с титаном (45 %) — нитинол. Достаточно легкий, прочный, коррозионностойкий — он считался неплохим конструкционным материалом и не более. Однако его создатели продолжали проводить с ним различные эксперименты, и вдруг сплав проявил совершенно уникальную способность — "помнить" свое прошлое. Обнаружено это было во время одного из многочисленных опытов. Нитиноловую спираль после определенной обработки нагрели до 150 °C и охладили, а затем к ней подвесили груз, который растянул ее и превратил в совершенно ровную проволоку. Чудеса начались, когда эту проволоку опять нагрели до 95 °C: на глазах изумленных исследователей она превратилась в… спираль. Опыт ставили снова и снова, придавая металлу все более сложные формы, но он продолжал демонстрировать блестящую "память", невозмутимо принимая свой первоначальный облик. Проволоку, например, согнули таким образом, что она образовала слово "нитинол", затем нагрели, охладили и деформировали до неузнаваемости, но стоило пропустить через эту проволочную абракадабру сильный электрический импульс, мгновенно разогревший ее, и взорам ученых вновь предстало название сплава. В наши дни нитинол уже не одинок: ученым удалось разработать еще ряд двойных и тройных сплавов (медь — цинк, медь — олово, золото — кадмий, титан — кобальт, цирконий — рубидий, медь — алюминий — никель и другие), также обладающих способностью "помнить", как они выглядели в "былые времена". "Светить — и никаких гвоздей!" Обычная электрическая лампочка не столько светит, сколько греет: лишь несколько процентов электроэнергии превращается в свет, а львиная доля ее теряется в виде бесполезной теплоты, выделяемой лампой в окружающее пространство. Как же повысить коэффициент полезного действия электроламп? Ученые Массачусетского технологического института (США) разработали покрытие из двуокиси титана и серебра, которое прекрасно пропускает световые лучи, но является непреодолимым препятствием для тепловых лучей. Такое покрытие, нанесенное изнутри на лампочку, нисколько не мешает ей светить, зато выделяемая спиралью теплота, отразившись от покрытия, вновь попадает на спираль, заставляя ее при этом светиться еще ярче. Новая лампа потребляет на 60 % меньше энергии, чем обычная, а служит примерно в два — три раза дольше (2500 часов). Золото в снегу В последнее время геологи проявляют повышенный интерес к ботанике: многие растения как бы сигнализируют о повышенной концентрации в почве тех или иных химических элементов, а это, в свою очередь, означает, что где-то вблизи залегают соответствующие руды. По мнению ученых Геологического института Бурятского филиала Сибирского отделения АН СССР, число таких природных "сигнализаторов" можно значительно расширить: в поисках золота, например, может помочь… снег. К этому выводу ученые пришли, проведя любопытный эксперимент: на одном из известных золотоносных участков исследователи взяли в конце зимы пробы снега из слоев, не соприкасавшихся с почвой. И что же? Чувствительные методы анализа позволили установить, что в "подопытном" снеге содержится значительно больше драгоценного металла, чем в обычном. По всей вероятности, золото как бы "испаряется" из почвы на поверхность, причем подземные воды помогают ему преодолеть мерзлые горные породы. Вот почему бурятские геологи считают вполне перспективным метод поиска золотоносных месторождений путем анализа снега или талых вод. Хоть видит око… Ученые установили недавно, что одна из звезд созвездия Рака, находящаяся от Земли на расстоянии "всего" 175 световых лет, характеризуется очень высоким содержанием золота, которое составляет одну стотысячную часть массы звезды. Для сравнения укажем, что концентрация этого драгоценного металла в солнечном веществе в миллион раз меньше. На Земле на долю золота приходится одна двухсотмиллионная часть массы планеты, но оно сосредоточено главным образом в нескольких районах, в то время как для звезды, на которую обратили внимание ученые, характерно равномерное распределение золота по всей ее массе. По подсчетам специалистов, золотые "запасы" далекой звезды достигают почти ста миллиардов тонн. Что там — на небесах? Один из сотрудников Вашингтонского университета опубликовал данные своих исследований, посвященных химии межзвездного пространства. Как утверждает ученый, в космосе обнаружены молекулы около 50 различных веществ. Что касается содержания отдельных химических элементов, то здесь пальма первенства принадлежит водороду. Если содержание его в межзвездном пространстве принять за единицу, то количественные характеристики других "лидеров" выражаются следующими величинами: гелия — 0,09, кислорода — 7·10-4, углерода — 3·10-4, азота — 9·10-5, неона — 8·10-5, железа — 4·10-5, кремния и магния — по 3·10-5, серы — 1·10-5, аргона — 6·10-6, алюминия, кальция, натрия и никеля — по 2·10-6, хрома — 7·10-7, хлора — 4·10-7 и фосфора — 3·10-7. Другие элементы остались в этом "соревновании" далеко позади. Цинк, медь и лимон Энергетический кризис заставил заняться поисками источников энергии многие крупные научные и промышленные организации. Но от профессиональных изобретателей не отстают и любители. Так, один английский часовщик из города Киддерминстер, решил воспользоваться для этой цели… обычным лимоном. Вставив в него цинковую и медную пластинки с выводами, изобретатель получил оригинальную электрическую батарейку. В результате реакции лимонной кислоты с медью и цинком возникал ток, которым в течение нескольких месяцев питался крохотный моторчик, приводящий в движение рекламную табличку в витрине часовой мастерской. Чем не изобретение? Но вот беда: по подсчетам специалистов, чтобы обеспечить током, например, всего один телевизор, нужна батарея из десяти миллионов лимонов. "Резиновый" сплав Несколько лет назад английская фирма "Сьюперформ металз" разработала новый сплав на основе алюминия. Сохраняя все достоинства металла — высокую электропроводность, теплопроводность, прочность, сьюпрал (так называется сплав) обладает удивительной пластичностью: брусок из него уже при слабом нагреве можно растянуть в десять раз. Такая "растяжимость" не всякой резине по плечу! Из нового сплава можно изготовлять изделия самой причудливой конфигурации, используя известные методы технологии формовки пластичных материалов под давлением. Из консервных банок С тех пор как в 1810 году англичанин Питер Дюренд получил патент на консервную банку из жести, люди употребили в пищу несметное количество консервов. Наиболее крупные страны ежегодно производят по нескольку миллиардов банок с мясом, рыбой, овощами и другими продуктами. А много ли это? Судите сами: с начала нашего летоисчисления человечество прожило лишь немногим более миллиарда минут (28 апреля 1902 года в 10 часов 40 минут время начало отсчитывать второй миллиард минут новой эры). Но если для "хранения" прожитых минут нужны лишь крохотные уголки памяти (да и то не всегда), то с миллиардами использованных консервных банок дело обстоит значительно сложнее. Каждую секунду в мусорные ящики летят тысячи и тысячи банок. Но ведь городские свалки мусора — не безбрежный океан, способный поглотить все отходы города. К тому же банки — это не только железо, но и слой дефицитного олова. Вот почему инженеры и ученые давно ищут простые и экономичные способы утилизации этих металлов. Щербинский завод вторичных цветных металлов и Донецкий институт "ВНИПИвторцветмет" создали установку для снятия олова с консервной жести. Непрерывным потоком банки поступают в горловину установки, которой управляет один человек. Там под действием электролиза железо вынуждено снимать оловянную "рубашку". Из этой "бани" выходят очищенная жесть (кстати, отличная шихта для сталеплавильных печей) и светлые оловянные слитки. Они снова готовы превратиться в консервную банку. Алюминий из мусора Существует немало проектов и уже действующих установок по извлечению ценных компонентов из отходов, поступающих на городские свалки. В некоторых установках, в частности, предусмотрено оригинальное электромагнитное устройство для "добычи" из мусора алюминия — так называемый электродинамический сепаратор. Но ведь магнитное поле не действует на алюминий? Как же с его помощью удается извлечь этот металл? Оказывается, если возбудить в алюминиевом предмете переменный ток, перемещая его в соответствующем электрическом поле, то металл на какое-то время намагничивается. В этом состоянии он и попадает в "руки" магнитов (стальные и железные предметы удаляются из общей массы тоже магнитным способом, но раньше, чем алюминий, и, разумеется, без электрической обработки). В других установках для той же цели предусмотрен водный сепаратор: плотность воды в нем повышают добавкой минеральных веществ, и более легкие алюминиевые частицы вынуждены всплывать на поверхность. Остается их собрать и отправить на металлургический завод, где они превратятся в проволоку, ленту, фольгу и другие виды алюминиевой продукции. "Кровоточащие" болты Наибольшим нагрузкам в различных узлах машин и механизмов подвергаются, как правило, детали креплений и соединений. Многие из них при этом испытывают знакопеременные нагрузки, а именно на такой "работе" металл особенно сильно подвержен опасному "профессиональному заболеванию" — усталости. Порой уставший металл не выдерживает выпавших на его долю тяжких испытаний и в нем появляются микротрещины, которые затем могут стать причиной поломок и аварий. А нельзя ли обнаружить усталость металла на ранней стадии, чтобы не допустить выхода механизма из строя? Эту задачу поставил перед собой английский изобретатель Эрик Дональд. Ему удалось найти простое и остроумное решение: он предложил высверливать болты и образовавшуюся полость заполнять яркой краской. Как только в таком болте образуется маленькая трещинка, жидкость начнет просачиваться наружу и тем самым своевременно сигнализировать о возникшей опасности. За свои "кровоточащие" болты Дональд был удостоен золотой медали Британского института патентодержателей и изобретателей. Метод применим и к другим соединительным элементам: осям, на которых вращаются винты вертолетов, шарнирам, заклепкам и т. д. По мнению специалистов, новинка позволит предотвратить многие катастрофы, в частности авиационные, и спасти тысячи человеческих жизней. Алмазный сплав Американские ученые фирмы "Дюпон" создали композиционный материал, обладающий очень высокой износостойкостью. Никелевая основа нового материала, названного "алмазным сплавом", содержит 30 % порошкообразных синтетических алмазов. Трущиеся детали станков, машин, приборов, покрытые тонким слоем этого композита, примерно в шесть раз долговечнее обычных. Новая "профессия" ультразвука Чехословацкие инженеры разработали оригинальное оборудование для непрерывного удаления окалины с поверхности стальных полос и проволоки. Пройдя термическую и химическую обработку, металл поступает в распоряжение ультразвука, который не только ускоряет удаление окалины, но и ухитряется извлечь ее из мельчайших поверхностных пор. Новый метод позволяет заметно повысить качество нержавеющей проволоки, полос трансформаторной стали, лент из различных легированных сталей и сплавов. В пять раз возрастает технологическая скорость движения ленты или проволоки на всех узлах оборудования. Взрыв в цехе Если массивная отливка, весящая несколько десятков тонн, оказалась бракованной, то хлопот с ней не оберешься: такого "мастодонта" надо вывезти из цеха ("нелегкая это работа — из болота тащить бегемота!"), разрезать на части (что, пожалуй, еще сложней), а затем снова подать к печам. Польские специалисты запатентовали новый метод дробления крупных отливок прямо на месте изготовления с помощью взрыва, точнее серии направленных взрывов малых порций взрывчатых веществ. Важную роль при этом играет ЭВМ, которая рассчитывает, как распределить заряды на отливке. В результате нескольких последовательных взрывов с самогасящейся взрывной волной отливка расчленяется на части. Разумеется, эти взрывы не причиняют ущерба и оконные стекла в цехе остаются целыми и невредимыми. Рекордная отливка Если бы в литейном производстве, как в спорте, регистрировались мировые рекорды, то к их числу несомненно следовало бы отнести недавний успех французских специалистов. Методом вертикального центрифугирования им удалось отлить огромную деталь из нержавеющей стали — массой 15 тонн и диаметром более 4 метров. Этот способ, которым получают крупные литые детали для авиационной техники, атомных электростанций, нефтехимического оборудования, намного экономичнее, чем традиционные способы. Кроме того, при новом методе заметно упрощаются операции окончательной обработки деталей. Лавсан с железом Полиэфирные волокна, больше известные в нашей стране под названием "лавсан", уже успели неплохо зарекомендовать себя в технике. Недавно ученые Института физико-органической химии АН БССР сумели придать этому материалу ряд новых ценных свойств. В макромолекулу полимера они ввели органические вещества, содержащие железо, благодаря чему повысились прочность и термостойкость лавсана. На него теперь можно наносить металлические покрытия. Если лавсановую пленку покрыть тонким слоем алюминия, то материал приобретает красивый бронзовый "загар" и может быть успешно использован для отделки интерьеров зданий. Полезная ржавчина Вот уже много тысячелетий ржавчина считается злейшим врагом железа. А нельзя ли зло обратить в добро? Таким вопросом задались ученые Индийского научно-исследовательского электрохимического института. Им удалось создать любопытную технологию превращения слоя ржавчины в… защитное покрытие. Для этого на стальное изделие, покрытое густым налетом ржавчины, наносят специальный состав, благодаря которому слой окислов становится прочным "панцирем" черного цвета. Затем на него наносят краску, которая, кстати, держится на этом защитном слое надежнее, чем непосредственно на металлической поверхности. Теперь изделию коррозия не страшна. Второе рождение пушки Многие металлические предметы, найденные археологами при раскопках или поднятые с морского дна, имеют, к сожалению, плохой "товарный вид": за долгие столетия ржавчина оставляет на них неизгладимые следы своей коварной деятельности. Группа физиков из Портсмута (Великобритания) разработала надежный способ реставрации древних железных предметов. Новинку опробовали на чугунной пушке, которая была поднята с английского фрегата "Мэри Роуз", затонувшего в 1545 году. Обросшую толстым слоем ржавчины пушку поместили в специальную камеру, наполненную водородом с небольшой примесью кислорода. Температуру в камере постепенно подняли до 1500 °C. "Пропарясь" в течение пяти дней в этой своеобразной "бане", орудие практически полностью очистилось от ржавчины, которая восстановилась до железа. Дав металлу остыть, экспериментаторы покрыли его слоем прозрачного пластика — поливинилхлорида. Вновь обретя свой первоначальный вид, старинная пушка заняла почетное место в одном из исторических музеев. Новым методом можно реставрировать любые железные предметы старины: кольчуги, мечи, сельскохозяйственные орудия и многое другое. При этом полимерная броня, как утверждают ученые, будет надежно охранять металл от коррозии по крайней мере 400 лет. И "зрение", и "память" В Харьковском специальном конструкторском бюро создана видеоустановка, позволяющая следить за ходом плавки чугуна или стали и при необходимости тут же вносить в технологический процесс соответствующие коррективы. От своих предшественников новая установка отличается тем, что она обладает не только "зрением", но и "памятью". Благодаря этому оператор при помощи клавишей может задать специальному электронному устройству тот или иной вопрос, касающийся технологии плавки, и устройство, "покопавшись в памяти", оперативно даст нужный ответ. Враг фальшивомонетчиков Краска, используемая в США для изготовления бумажных денег, всегда содержит окислы железа. На этом основан принцип действия созданных несколько лет назад американскими конструкторами валидаторов — портативных приборов, позволяющих быстро определить подлинность банкноты, не отправляя ее на длительную экспертизу. Если провести датчиком валидатора по настоящей банкноте, то на нем замигает сигнальная лампа; если же деньги фальшивые, то прибор не удостаивает их подобной "иллюминацией". Такая разборчивость объясняется тем, что магнитная головка валидатора взаимодействует с окислами железа, входящими в состав краски, и при этом с высокой точностью измеряется расстояние между границами рисунка. Тут же делается вывод о подлинности банкноты. Крупные банки США уже оснащены приборами — "антифальшивомонетчиками". Вечный наждак Каждый, кто пользовался наждачной бумагой, знает, что она быстро теряет свои деловые качества: становится хрупкой, "лысеет", "засаливается". Шведские инженеры фирмы "Сандвик" предложили вместо наждачной бумаги применять тонкую фольгу из нержавеющей стали. Роль зерен корунда при этом играют острые выступы, которые образуются на фольге в результате специальной электрохимической обработки. Фольгу можно наклеить на поверхность любой формы, благодаря чему получается инструмент, удобный для выполнения самых разнообразных работ по металлу или дереву. "Облысение" новому материалу не грозит, а "засаливание" легко устраняется с помощью соответствующего раствора. Наждак из нержавейки служит в десятки раз дольше, чем наждачная бумага. "Теперь можно вибрировать!" Многие технологические процессы современной техники основаны на вибрационных колебаниях, помогающих бурить нефтяные скважины, обрабатывать металлические изделия и заготовки, транспортировать сыпучие материалы. Но вот беда: некоторым деталям вибрационного оборудования, работающим в особенно тяжелых условиях, сильная тряска довольно быстро "надоедает", они разрушаются и поэтому требуют частой замены. Оригинальное решение проблемы нашли специалисты одной из японских металлургических компаний. В ее лаборатории создана необычная сталь, способная преобразовывать энергию вибрации в теплоту. Деталям, изготовленным из такой стали, никакая тряска не страшна: они не только поглощают вибрацию, но и гасят возникающие при этом резонансные колебания. В таких условиях можно и повибрировать! Топливо из мусора Охвативший многие страны энергетический кризис, вызванный ростом цен на нефть, вынуждает ученых заниматься поисками дешевых источников энергии. Кое-какие результаты эти поиски уже принесли. Так, специалисты бразильской металлургической компании "Косипа" разработали любопытный проект, благодаря которому на сталеплавильный комбинат в Сан-Паулу ежегодно будет поступать до 12 миллиардов кубических метров газа с… мусорной свалки, точнее, с завода, который намечено соорудить рядом с ней специально для переработки городских отходов. Проблем с сырьем для этого завода не предвидится: чего-чего, а мусора везде хватает. Карандаш для стали Венгерские инженеры разработали оригинальный карандаш, которым можно писать и рисовать не на бумаге, а на изделиях из стали, стекла, керамики или пластмассы. "Главное действующее лицо" этого вибрационного карандаша — игла из твердого сплава. Регулируя ход такого "грифеля", можно изменять глубину линии, наносимой на поверхность материала. Устройство питается энергией от бытовой электросети. Крик моды В связи с ростом цен на бензин в наши дни во многих странах наблюдается велосипедный бум. Десятки разнообразных моделей велосипедов можно встретить сегодня на улицах европейских городов. Но меняется не только конструкция машин: традиционный материал для рам — сталь — уступает свои позиции другим металлам. Последним криком моды стал велосипед из титановых сплавов — он весит всего семь килограммов. Титановые челюсти Как известно, природа наделила человека тридцатью двумя зубами. Но вот беда: с годами у большинства из нас их становится все меньше. Порой наступает момент, когда уже не обойтись без протеза. Работники клиники хирургической стоматологии Лейпцигского университета имени Карла Маркса предлагают принципиально новое решение проблемы, извечно стоящей перед человечеством. Они считают, что в кость челюсти можно имплантировать металлическую пластинку, чтобы в дальнейшем по мере сокращения "зубных запасов" пополнять их с помощью искусственных зубов, ввинчиваемых в нарезку, которая сделана в пластинке. В качестве материала, вживляемого в челюсть, предложен титан, легко воспринимаемый тканями человеческого организма. Свинец в нейлоновой "сорочке" Рубашки из синтетических материалов уже не в моде. А вот известная американская фирма "Смит энд Вессон" предложила одевать в нейлоновые "сорочки" свинцовые пули для тренировочных стрельб. При использовании обычных пуль воздух в тире отравляется свинцовыми парами, которые представляют опасность для здоровья людей, вынужденных длительное время проводить в помещении для стрельбы. Нейлоновая оболочка позволяет снизить содержание частиц свинца в воздухе на 60 %. Алюминиевые зеркала Недавно в английских магазинах появилась новинка — зеркала, поверхность которых изготовлена из тонкой, но прочной, гладкой и прозрачной полиэфирной пленки, покрытой с одной стороны слоем осажденного в вакууме алюминия. Пленку натягивают на легкую рамку — и зеркало готово. Сначала эти зеркала благодаря их легкости предназначались только для авиации. Но вскоре ими заинтересовались и строители: из алюминированной пленки начали делать зеркальные потолки и стены. Поскольку такие зеркала не запотевают, они оказались особенно удобными для ванных комнат и других помещений с высокой влажностью. Зеркальная одежда Специалисты французской фирмы "Шом" разработали новую ткань "триболит". Ее основа — полиэтилен и волокна полиэфира, на которые напылен тончайший слой алюминия, образующий на внутренней стороне ткани своеобразное "зеркало". Благодаря алюминию излучаемая телом человека теплота отражается от ткани и аккумулируется под одеждой. Поэтому в куртках из триболита тепло даже в холодную погоду. Ткань для металлургов Кишиневский комбинат "Искож" выпустил опытную партию теплозащитной ткани, способной выдерживать температуру до 900 °C. Эта прочная ткань совсем не горит, и поэтому одежда из нее может надежно предохранять от огня и расплавленного металла пожарников, металлургов, сварщиков. Серебристое покрытие ткани хорошо отражает тепловые лучи. Испытания нового материала, проведенные на Усть-Каменогорском свинцово-цинковом комбинате, Московском заводе "Серп и молот", Ижевском металлургическом заводе, дали положительные результаты. В лаборатории предприятия есть уже образцы материалов, выдерживающих нагрев до 2000 °C! "Нам сверху видно все…" В какой только роли не приходится выступать космонавтам во время их пребывания в космических командировках! Они и биологи, и кинооператоры, и медики, и сварщики — да разве перечислишь все их небесные специальности! Одной же из наиболее "массовых" профессий космонавтов можно с полным основанием считать геологию. В самом деле, с заоблачных высот наша планета видна как на ладони, причем взорам небесных геологов открываются одновременно огромные территории земной поверхности. Экипажи орбитальных станций "Салют" помогли ученым по-новому оценить геологическое строение многих районов Дальнего Востока. Исследование фотографий, выполненных космонавтами, позволило обнаружить практически стертую с лица Земли систему древних вулканов со значительными запасами полезных ископаемых. Благодаря этим снимкам были выявлены крупные разломы земной коры, определены места залегания рудных тел. На основе наблюдений и фотосъемок из космоса удалось составить единую прогнознометаллогенетическую карту рудных провинций Дальнего Востока и Тихоокеанского вулканического пояса. "Информация к размышлению", переданная космонавтами геологам Западной Сибири, дала им возможность "нарисовать" карту крупных рудоносных структур и тем самым выявить перспективные районы залегания ценных полезных ископаемых. Дары вулканов Ученые Дальневосточного филиала Всесоюзного научно-исследовательского института минерального сырья создали палеовулканологическую карту Дальнего Востока. Что же это за необычная карта? Оказывается, миллионы лет назад в этих краях действовало примерно две тысячи вулканов. Постепенно природные "топки" прекращали свою в буквальном смысле бурную деятельность и сегодня от некогда грозных вершин остались лишь воспоминания: некоторые из вулканов сравнялись с поверхностью земли, другие вовсе ушли "в подполье" (любопытно, что на одном из таких "подпольных" вулканов стоит Хабаровск). Новая карта, на которой указаны все потухшие "очаги" дальневосточного региона, в первую очередь предназначена для геологов. Дело в том, что вулканы — это своеобразные "металлургические предприятия" природы, которые постоянно выпускают немало ценных металлов. Так, изучая продукты извержений Авачинской сопки на Камчатке, исследователи установили, что этот вулкан выносит на поверхность большие количества олова, меди, вольфрама, серы. А расположенный на Курилах, на острове Парамушир, вулкан Эбеко ежесуточно выдает "на-гора" 30 тонн растворенного железа и 60 тонн алюминия. Палеовулканологическая карга станет для геологов надежным компасом в их поисках полезных ископаемых, особенно на стыке материка с океаном, где находится вулканический пояс как давно потухших, так и действующих до сих пор подземных "заводов". Листва не только шелестит О том, что деревья шелестят листьями, знают все от мала до велика. Этот волшебный шорох, издаваемый листвой, не только воспет поэтами, но и, должно быть, уже досконально исследован лесоведами. А вот о другом явлении, также связанном с листьями, стало известно лишь совсем недавно. Ученые Колумбийского университета и Национального научного фонда США в результате проведенных исследований обнаружили, что, измеряя световые лучи, испускаемые листвой, можно вести разведку притаившихся в почве полезных ископаемых. Оказалось, что находящиеся в земле минералы вызывают малозаметные, но тем не менее вполне уловимые с помощью современных приборов изменения в химическом составе листьев. Причем для каждого вида минералов характерно особое воздействие на листву, и благодаря этому спектр световых лучей способен подсказать геологам, какие полезные ископаемые спрятаны природой в данном районе. Спектральный анализ лесных массивов можно довольно быстро и точно выполнить с помощью высокочувствительной аппаратуры, установленной на самолетах. Сплав и взрыв Во Франции создано нехитрое приспособление, позволяющее измерять силу взрыва. Это бывает необходимо, например, когда требуется проверить партию взрывчатого вещества после длительного хранения. Ведь прежде чем произвести на шахте или в карьере рабочий взрыв, его надо рассчитать, а для этого должна быть точно известна сила взрывчатки. Вот тут и приходит на помощь приспособление, представляющее собой сеточку из четырех тонких пластинок, изготовленных из сплава меди, никеля и марганца. Сплав обладает способностью изменять свои электрические свойства под действием импульсов давления. Изменения и дают возможность оценить силу взрывчатки. Без кобальта и с кобальтом Мощные постоянные магниты изготовляют обычно из сплавов на основе кобальта — металла, довольно дефицитного. Японская фирма "Мацусита" разработала новый магнитный сплав, главные компоненты которого — марганец, алюминий и углерод. Магниты из этого материала примерно на 30 % сильнее кобальтовых. К достоинствам сплава относится и возможность обрабатывать его на токарном станке. Но для кобальта ученые находят все новые области применения. Другая японская фирма освоила выпуск магнитофонной ленты из кобальтового сплава толщиной всего 0,3 микрона. Преимущества новой ленты очевидны: при тех же габаритах кассеты объем звукозаписи возрастает в десять раз. "Двуликий" сплав Польские ученые разработали уникальный сплав, который в зависимости от напряжения электрического тока может проявлять либо магнитные, либо полупроводниковые свойства. Благодаря такому "двуличию" сплав, состоящий из кадмия, марганца, теллура и других элементов, найдет разнообразное применение во многих электронных устройствах и приборах. Алхимия наизнанку Усилия средневековых алхимиков были направлены на то, чтобы без особого труда превращать различные недефицитные материалы в золото. И хотя поиски алхимиков в этом направлении зашли в тупик, наука продолжала искать пути получения одних элементов из других. Современным ученым, как известно, такая задача вполне по плечу. Но велико было бы удивление алхимиков, если бы они узнали, чем занимаются их непутевые потомки: оказывается, например, вместо того чтобы денно и нощно, не покладая рук, добывать золото из других веществ, они безрассудно обстреливают этот благородный металл какими-то частицами, стремясь превратить его во франций — металл, которого практически нет в природе. Действительно, один из наиболее распространенных способов получения франция заключается в облучении "мишеней" из золота многозарядными ионами неона, ускоренными на циклотронах или линейных ускорителях. Такие процессы можно с полным основанием назвать "алхимией наизнанку". Молчит ли металл? Уставший человек может прекратить работу и отдохнуть. Ну, а если "устал" металл, находящийся под нагрузкой? Как узнать об этом, чтобы вовремя заменить "уставшую" деталь? Ведь металл молчит. Молчит ли? Оказывается, нет. Ученые Всесоюзного научно-исследовательского института методов и средств неразрушающего контроля создали ультразвуковую установку, которая позволяет определять дефекты, появляющиеся в металле в процессе работы, по так называемым деформационным шумам. Дело в том, что при чрезмерных нагрузках кристаллическая структура металла начинает нарушаться. Часть выделяющейся при этом энергии превращается в звуковые колебания, они улавливаются специальным датчиком и передаются самопишущему устройству. Если, например, стальную полосу, к которой прикреплен датчик, сгибать попеременно в одну и другую сторону, то сначала самописец будет чертить на бумажной ленте прямую линию — это значит, что сталь выдерживает нагрузку "без осложнений". Но вот на ленте появился крохотный зубчик, затем другой, третий… Так установка сигнализирует о том, что кристаллическая решетка "дала трещину". Чем сильнее развивается разрушительный процесс, тем более крупные зубцы вычерчивает самописец. Эффективный метод испытаний металлических конструкций, также основанный на акустической эмиссии металла, разработан на одном из чехословацких заводов, изготовляющем оборудование для атомных электростанций. Такое оборудование необходимо постоянно контролировать в процессе эксплуатации. Для этой цели в наиболее ответственных узлах конструкций устанавливают пьезоэлектрические датчики, способные улавливать до 3000 сигналов из "недр" металла. Сигналы передаются на ЭВМ и здесь расшифровываются, благодаря чему обслуживающий персонал всегда в курсе "настроений" металла. Радуга на стали Кто из нас не любовался радужными переливами на поверхности мыльных пузырей? Но, вероятно, мало кто при этом задумывался, чем же объясняется такая игра света на тонкой прозрачной пленке. А вот ученые из ФРГ заинтересовались этим явлением и нашли ему любопытное практическое применение. Радуга на мыльной пленке вызывается интерференцией световых лучей. Этот оптический эффект и был положен западногерманскими химиками в основу разработанного ими оригинального способа "окраски" стали. На поверхность металла наносится бесцветный прозрачный слой толщиной в несколько микрон. Тончайшая пленка позволяет лучам света наиболее ярко продемонстрировать свои интерференционные "способности". А поверхность стальных изделий "окрашивается" при этом в разнообразные цвета — от черного и темно-синего до зеленого, золотистого, красного. Покрытие не боится ударов и изгибов, безболезненно переносит прессование и вытяжку. К "окрашенному" новым способом металлу уже присматриваются строители, которые намерены использовать его для декоративной отделки зданий. Кобальтовый гразер Примерно четверть века назад появились первые микроволновые генераторы — мазеры, вскоре были созданы оптические генераторы — лазеры, а затем инфракрасные — иразеры. Совсем недавно австралийские физики разработали гамма-лучевой генератор — гразер. Главное действующее лицо в нем — изотоп кобальта 6 °Co, помещенный в криостат, где поддерживается температура, близкая к абсолютному нулю. Подвергнутый действию радиоизлучения и сильного магнитного поля, изотоп 6 °Cо испускает радиоактивное излучение только в одном направлении, причем длина волны этого излучения в миллион раз меньше длины световых волн. Гразеры позволят получать трехмерные "портреты" молекул и атомов, обеспечат высокую точность резания металлов, помогут хирургам в проведении сложнейших операций, найдут применение в космической навигации, астрономии, ядерной физике. Последние из "могикан" После того как в 1911 году было открыто явление сверхпроводимости, круг сверхпроводников непрерывно расширялся. Свою готовность "беспрекословно" проводить при очень низкой температуре электрический ток уже продемонстрировали почти все металлы и сплавы, ряд полупроводников и даже некоторые полимеры. И только щелочные металлы до последнего времени упорно продолжали "чинить препятствия" току даже вблизи абсолютного нуля. Это обстоятельство шло вразрез с общепризнанной теорией сверхпроводимости, согласно которой щелочные металлы не имели никаких привилегий перед своими собратьями по таблице элементов. Несколько лет назад итальянский ученый К. Реале из Миланского института физики все же сумел "уговорить" литий и цезий подчиниться общим для всех металлов законам. Правда, у этих представителей щелочного семейства сверхпроводимость удалось пока обнаружить лишь в тонких пленках (толщиной в доли микрона) при температуре всего 1–2 градуса Кельвина (т. е. вблизи абсолютного нуля). "Фотогеничный" металл Современная техника позволяет ученым не только заглянуть в самые "недра" металлов и других материалов, но и получить "на память" соответствующие фотоснимки. Так, специалисты Кембриджского университета (Великобритания), применив электронный микроскоп с высокой разрешающей способностью, сумели сфотографировать структуру ряда аморфных веществ и кристаллов. Снимки показывают, что атомы аморфных тел располагаются хаотически, в то время как атомы кристаллов занимают места в строго определенном порядке. Особенно "фотогеничными" оказались атомы золота: на "портретах", увеличенных в семь миллионов раз, отчетливо видны ряды атомов, располагающиеся на расстоянии 0,235 нанометра (нанометр — одна миллиардная доля метра) друг от друга. Полку лютеция прибыло Как известно, природный лютеций состоит из двух изотопов — стабильного 175 Lu (около 97,5 %) и бета-активного 176 Lu с периодом полураспада 20 миллиардов лет. Искусственным путем было получено еще несколько радиоактивных изотопов этого редкоземельного элемента с периодами полураспада от 22 минут до 500 дней. До недавнего времени самым "молодым" из них считался изотоп 166 Lu, "найденный" в 1968 году учеными Объединенного института ядерных исследований (ОИЯИ) в Дубне. И вот недавно там же в результате бомбардировки высокоэнергичными протонами мишеней из вольфрама и тантала на свет появилось еще четыре изотопа лютеция с массовыми числами 158, 160, 161 и 163. Периоды полураспада "новорожденных" измеряются десятками секунд. Загадка индия Исследуя с помощью электронного микроскопа мельчайшие частицы индия, канадские физики обнаружили, что, когда размер частиц этого металла становится меньше некоторой величины, температура плавления его резко понижается. Так, если размер частиц не превышает 30 ангстрем, то они плавятся при температуре чуть выше 40 °C, в то время как обычно это происходит при 156 °C. Такой колоссальный скачок представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к большим массам вещества, а в опытах канадских физиков расплавлялись "гомеопатические" дозы индия — всего несколько тысяч атомов. К чему приводит возбуждение Несколько лет назад физики Билефельдского университета (ФРГ) выполнили интересный эксперимент, который длился всего десятую долю секунды, хотя подготовка к нему заняла два года. На специально созданной установке ученые подвергли атомы цезия бомбардировке сфокусированным импульсом мощного лазера. В ответ на столь "грубое вмешательство" орбиты электронов растянулись и атом пришел в состояние высшего возбуждения. Он "располнел" в десятки тысяч раз и на мгновение стал величиной с бактерию. Атомы "кузнечики" Прогресс современной науки о металлах немыслим без проникновения в самые недра материи. Несколько лет назад А. Креве, профессору физики Чикагского университета имени Энрико Ферми, удалось сфотографировать отдельные атомы урана и тория. Продолжая исследования, ученый довел технику своих экспериментов до необычайно высокого уровня и сумел с помощью электронного микроскопа снять фильм о движении этих атомов. Любопытно, что "герои" фильма перемещаются не непрерывно и равномерно, а прыгают, словно кузнечики, с одного места на другое. Сейчас Креве, "изменив" урану и торию, намеревается сфотографировать атомы некоторых легких элементов (с атомной массой до 20). Такие снимки представят огромный интерес для изучения роста кристаллов, протекания химических реакций и других процессов. В одиночку и парами Новый цветной фильм, созданный в США, не дал огромных кассовых сборов, однако для определенного круга людей он представил несомненный интерес. Речь идет о фильме, снятом физиками Чикагского университета. Главные действующие лица этого "боевика" — атомы урана, платины, серебра, золота и других металлов. Уникальные съемки стали возможными благодаря изобретению, позволившему соединить электронный микроскоп с кинокамерой. Движение атомов сначала было зафиксировано на черно-белой пленке, а затем и на цветной. Оказалось, что одни атомы снуют взад-вперед, другие описывают широкие круги, а третьи предпочитают "гулять" парами. Пока не удалось научно объяснить, чем вызвано такое различие в характере движения тех или иных атомов. Металловедческий комбайн Чтобы выполнить всестороннее исследование свойств нового сплава, металловедам приходится провести десятки испытаний на различных приборах, снять сотни показаний, обработать и проанализировать их, проделать порой сложные расчеты. Кроме того, для подобного исследования надо иметь немалое количество "подопытного" сплава, а ведь он может быть дорогим или дефицитным. Короче говоря, требуется много времени, много приборов, много испытуемых образцов. А нельзя ли усовершенствовать и упростить эту сложную и кропотливую работу? Такую задачу поставили перед собой ученые лаборатории редких металлов Института металлургии имени А. А. Байкова Академии наук СССР. Поставили — и решили. Им удалось сконструировать универсальную машину для комплексного исследования металлов и сплавов — своеобразный металловедческий комбайн, в котором значительный объем работ переложен на "плечи" ЭВМ. Используя образцы небольшого размера, комбайн выдает огромную информацию о металле или сплаве: величину теплового расширения, температуру плавления, данные об электропроводности, об изменении структуры в широком диапазоне температур. Поскольку в деле "замешана" электроника, на самый сложный вопрос можно получить точный и быстрый ответ. Склеивает… металл Английские ученые разработали оригинальный способ соединения мелких деталей при помощи… металлического "клея". Для этого детали, которые нужно "склеить", вставляют в специальную оправу, а ее, в свою очередь, — в устройство, напоминающее машину для литья под давлением. После этого в оправу, одновременно в несколько мест, впрыскивают мельчайшие дозы расплавленного металла — "клея", в роли которого выступает сплав на основе свинца или цинка. Проходят считанные секунды — и детали оказываются прочно соединенными друг с другом. Новый способ позволяет надежно "склеивать" изделия и детали не только из металлов, но и из керамики, нейлона, картона (пропитанного антипиренами) и других материалов. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх |
||||
|