|
||||
|
«ДИЛЕТАНТ— СПЕЦИАЛИСТ» НАРУШИТЕЛИ «ВЕДОМСТВЕННЫХ» ГРАНИЦ Перед нами еще одно парадоксальное явление научного творчества. По свидетельствам истории (да и нашего с вами времени, читатель), не последнее слово в науке произнесли… дилетанты. Однако, как и прежде, сначала, по совету древних, договоримся о словах. Понятие «дилетант» обросло многочисленными значениями, таит массу смыслов, пуще всего пренебрежительных. В ходу такие характеристики, как «невежда», «верхогляд», «аутсайдер» и другие, столь же энергичные выражения. Но если посмотреть в основания, обнаружим следующее. Это слово происходит от итальянского «дилетто», означающее «удовольствие». Оно и приклеилось к человеку, которому работа в смежной области знания доставляет радость и который занимается ею просто так, в свое удовольствие. Этот оттенок мы и прибережем в нашем повествовании. Дилетант — значит неспециалист, точнее, не получивший специального образования в той отрасли науки, где он отваживается что-то сказать. И садится он «не в свои сани» именно потому, что увлечен, интересно. Между тем это сведущий в своей сфере специалист и, уж во всяком случае, незаурядный ум, только проявивший любопытство к делам соседа. Конечно, —встречаются разные дилетанты. Наиболее распространен, по-видимому, тип, если можно так сказать, «дилетанта-агрессора». Это тот, кто, не удовлетворившись первоначально избранным полем деятельности, стремится испытать свои силы и на чужих территориях. Другой вид дилетантов — самоучки. Хотя они до всего дошли сами, их успехи в науке порой внушительнее, чем у иных титулованных специалистов. Вот что сказано, в частности, о немецком философе рубежа XVIXVII столетий Я. Беме: «Сапожник Якоб Беме был большой философ, в то время как некоторые именитые философы только большие сапожники». Примерно так же говорили и об И. Дицгене (XIX в.), сапожнике по профессии и философе по призванию, сравнивая его с некоторыми официально признанными философами того времени. Самоучки — выходцы из бедных слоев. Они приходят в науку от недостатка образования, но гонимые жаждой познаний. Совсем иные мотивы у «состоятельных дилетантов», людей, материально обеспеченных. Они, напротив, бегут от избытка знания в науки, где они сведущи мало. Скажем, высокообразованный, эрудированный для своего времени химик сэр Г. Дэви мог позволить себе занятия не по специальности, изучая любознательности ради физические процессы. Здесь он и прославился. В числе «состоятельных дилетантов» видим также выходца из аристократической семьи, датчанина Т. де Браге, англичанина лорда В. Росса и других. Далее мы скажем о них как и о дилетантах-самоучках подробнее. Отметим еще дилетантов горизонтального и вертикального смещения в зависимости от того, в смежные пли же в качественно новые дисциплины они переходят. Но, несмотря на различия, всех дилетантов объединяет желание подойти к проблеме со стороны, с иных позиций, а то и вовсе без какой-либо предварительной позиции. Одним словом, дилетанты всегда покушаются па чужое, переходят пограничные линии между науками либо вообще вторгаются в науку со стороны. Короче, они нарушители «ведомственных барьеров» и «табели о рангах». Но дело, конечно, не просто в этом. Как свидетельствует история, дилетанты сделали немало ценных открытий, более того, им принадлежит заметная роль в развитии науки. Известный немецкий исследователь культуры прошлого К. Керам в книге «Боги, гробницы, ученые» отмечает: если взять научные открытия за какой угодно исторический период, обнаружится, что многие выдающиеся результаты получены дилетантами. Современный английский науковед М. Малки подо шел к этому вопросу с несколько иной стороны. Он изучал новаторов в науке. По его расчетам оказывается, что среди новаторов непропорционально большая доля выходцев из других дисциплин. Иначе говоря, дилетантов. Попытаемся эти положения отстоять. В общем-то, это не просто. Фактов, подтверждающих наш парадокс, много. Но они разрозненны, разобщены. Хотелось бы преподнести их как-то убедительнее, то есть сгруппировать, обобщить, наметить закономерности в их проявлении. Прежде всего обращают на себя внимание случаи, если можно так сказать, «перекрестного дилетантизма!». Это имеет место, когда научные дисциплины взаимно обогащают друг друга, делегируют на обмен своих крупных специалистов, которые в соседней области, естественно, выступают как дилетанты. Конечно, такие перемещения более привычны для смежных областей знания. Так, с одной стороны, в химию приходили физики. И не просто приходили, но и проявляли себя в ней как выдающиеся ученые, например физик Г. Кирхгоф, который вместе с химиком Р. Бунзеном открыл эру спектрального анализа, внедрил его в практику химических исследований. Г. Кирхгофом и Р. Бунзеном изучены спектры огромного числа химических соединений, открыты элементы цезий и рубидий. Знаменитый английский физик конца XVIII — начала XIX века Г. Кавендиш также обогатил химию: его считают отцом так называемой «пневматической химии» — науки, изучающей вещества в газообразном состоянии. С другой же стороны, немало химиков послужили успеху физических исследований, а некоторые благодаря этому лишь и стали известными; скажем, профессор химии Копенгагенского университета X. Эрстед, установивший связь электрического тока с явлениями магнетизма, или только что упоминавшийся Г. Дэви, который выявил ряд зависимостей в процессах электропроводимости, высказал мысль о кинематической природе теплоты, сделал ряд других открытий. Трудно определить, к какой же из наук — физике или химии — отнести известного русского ученого Н. Бекетова. Начинал свой научный путь он как химик; его магистерская диссертация была посвящена некоторым «химическим сочетаниям». По затем, возрождая идею М. Ломоносова, вводит физическую химию в качестве учебной и научной дисциплины. Много работает сам в этой пограничной области и воспитал целую плеяду русских ученых (И. Осипов, В. Тимофеев, А. Альтов и др.), разрабатывающих проблемы этой новой по тем временам и перспективной отрасли. Аналогичные перекрестные движения отмечены между химией и медициной. Швейцарский врач XVI века Парацельс (Филипп Ауреал Теофраст Бомбаст фон Гогенгейм), по существу, заново после засилья алхимиков создает химическую науку. Им же основана и ятрохимия, то есть химия применительно к медицине. Три века спустя английский врач В. Проут развивает — на основе закона кратности атомных весов — плодотворную гипотезу, что все химические элементы образуются из самого легкого — водорода. В свою очередь, профессор химии Л. Пастер сделал важное для прогресса медицины открытие. Когда им было обнаружено, что причина болезней вин — брожение, вызываемое микроорганизмами, он тут же проводит аналогию между брожением и гниением. А это позволило установить микробную природу многих заболеваний человека. Петром, характеризуя вклад Л. Пастера в медицину, пнса ш, что колоссальная революция в самих основаниях врачебной науки, насчитывающей уже тридцать веков, произведена человеком, чуждым врачебной профессии. Теперь обратимся к открытиям, сделанным одновременно несколькими исследователями, но каждым самостоятельно и независимо от других. Вообще-то говоря, в нашем распоряжении не так уж и много подобных фактов. Но вес их внушителен. Когда один и тот же результат добывают разные, совершенно не связанные узами сотрудничества ученые и все они оказываются в этой области неспециалистами. — разве тут не торжествует дилетантизм! Возьмем биографию кислорода. Он был выделен в последние десятилетия XVIII века французом А. Боме, шведом К. Шееле и англичанином Д. Пристли. Правда, ни один из них не догадывался о роли кислорода в окислительных процессах. До конца жизни они так и не смогли понять кислородной основы горения и отстаивали флогистонную точку зрения, по которой причина горения — особое вещество флогистон (от греческого «флогиатос» — зажженный). Но здесь важно отметить другое. Все три первооткрывателя кислорода были в химии дилетантами. А. Боме по профессии аптекарь, К. Шееле тоже, а Д. Пристли и вовсе далек от химии да и от естествознания вообще. По образованию он филолог и богослов. Заметим, однако, что, несмотря на свое богословское «происхождение», это был выдающийся материалист, философские идеи которого шагнули далеко за пределы своехо времени. Стоит добавить, что А. Лавуазье, окончательно выведавший тайну кислорода, показав его участие в процессах окисления, был тоже дилетант. Он пришел в химию из физики. Впрочем, и в физику он тоже пришел со стороны, поскольку в молодости получил юридическое образование, но затем испытал сильнейшее влечение к естествознанию. И еще заметим. Его путь, как и путь богослова и филолога Д. Пристли, — пример вертикального перемещения специалистов в ряды дилетантов, поскольку оба начинали как гуманитарии, а прославились по ведомству естествоиспытателей. Теперь остановимся на открытии одного из великих законов природы — закона сохранения и превращения вещества и энергии. Здесь парадокс также празднует свои победы. Конечно, Г. Гельмгольц, один из авторов открытия, более известен работами в области физики. Однако его вступление в науку шло через медицину. По совету отиа, учителя по профессии, он решил стать врачом, чтобы возможно скорее проложить дорогу к независимому существованию. Он учится в высшей медицинской школе в Берлине, окончание которой приносит должность военного доктора в Потсдаме. Вскоре молодой человек — аспирант анатомического музея в Берлине же, а немного позднее — профессор физиологии и анатомии в Кенигсберге. Мы специально столь подробно осветили этапы биографии знаменитого ученого. И по образованию, и по роду деятельности у него просматривается надежная привязанность к медицине. Однако на фоне этих, казалось бы, стойких интересов Г. Гельмгольц вдруг заявляет о себе как физик. Еще в Потсдаме он выполнил исследование, принесшее ему впоследствии славу одного из покорителей великого закона. Исследование называлось «О сохранении работы». Интересно, что, когда оно появилось, один из начальников Г. Гельмгольца по военно-медицинскому ведомству заметил: «Наконец-то, кажется, что-то практическое». Незадачливый шеф решил, что речь идет о сохранении работоспособности его солдат. Другим автором закона сохранения значится Р. Майер, тоже немецкий естествоиспытатель и тоже медицинского «происхождения». Он изучал медицину в Тюбингенском университете. Занимаясь ею, даже не проявил стараний прослушать систематический курс физики, вообще не интересовался тогда ни физикой, ни математикой. И диссертация его была сугубо медицинской. В ней выяснялось действие препарата сантонина, применяемого для удаления глистов у детей. Но как раз случай с Р. Майером — типичный пример того, насколько человек, вооруженный «посторонними» знаниями, помогает решить задачу. То есть налицо все основания заявить следующее: вероятно, хорошо, что Р. Майер имел медицинское образование, так как именно оно помогло открыть физический закон. Молодой доктор, чтобы испытать себя и закалить в тяжелых тропических условиях, добровольно отправился корабельным лекарем на остров Яву. В одном из южных портов, пуская кровь матросу, обратил внимание на то, что венозная кровь очень светлая. Вначале даже подумал, что нечаянно задел артерию. Однако вскоре узнал, что в условиях тропиков это обычное явление. Р. Майер дал ему такое объяснение. При высокой внешней температуре организм для сохранения собственной теплоты нуждается в незначительных дозах горения. Поэтому окислительные процессы ослабевают, и кислород крови расходуется в меньшем количестве. Оттого-то кровь и оказалась чистой. Стало быть, шел он дальше, в жарких странах организм тратит меньше энергии на восстановление сил для поддержания теплоты тела, чем в северных широтах. А отсюда уже и идея, что химические процессы, теплота, механическое движение — все они превращаются друг в друга, сохраняя некоторые количественные отношения. Вообще-то к открытию рассматриваемого закона прпчастны ученые разных стран. Кроме немецких, здесь прославились английский физик Д. Джоуль, русский естествоиспытатель Э. Ленц, а еще ранее М. Ломоносов. Но М. Ломоносов как раз один из ярких представителей корпорации дилетантов. Правда, по другой, чем нас сейчас занимает, линии. Он — один из тех, кто вышел из низов народа и перешагнул на пути в науку через неодолимые барьеры. Итак, три дилетанта на один закон. Такое совпадение вряд ли объяснимо только происками случайности. Скорее напрашивается желание принять дилетантизм плодотворным спутником научного творчества и попытаться дать ему объяснение. Однако прежде, чем перейти к нему, выделим еще некоторые закономерности в проявлениях рассматриваемого парадокса. НАУКА МАССОВОЙ ПРОФЕССИИ В качестве еще одного факта, несущего черты регулярности, отметим положение в астрономии. Эта отрасль знания дала поразительно много дилетантов. Врачи, аптекари, юристы, представители многих других профессии и специальностей, а то и вовсе не имеющие ни профессии, ни специальности словно увидели здесь золотоносную землю. Им как будто нечем было занять свое время. Можно безошибочно утверждать, что не менее половины крупных открытий в астрономии сделаны вот такими пришельцами со стороны. Это характерно не только для прошлых веков, но и для XX столетия и случается даже в наши дни. О некоторых дилетантах мы расскажем. Самый выдающийся среди них Н. Коперник. Получив юридическое, а затем медицинское образование, он начал свою деятельность в качестве врача. Много времени посвятил также административной работе и финансовым делам, вообще известен разносторонностью занятий и интересов. Однако наиболее устойчивой оказалась его привязанность к медицине. Как врач, Н. Коперник славился далеко за предетами тех городов, где жил (Торунь, Фромборк). До нас дошли некоторые рецепты и рекомендации Н. Коперника по вопросам врачевания, а его библиотека и оставшиеся записи свидетельствуют, что по своим взглядам в области медицины он опережал современников. И все же гениальную известность и славу в веках ему принесла астрономия. Не получил профессионального образования и Т. де Браге, которого мы отнесли к числу «состоятельных дилетантов». Уже с детства он понимал, что его призвание — астрономия, но аристократическая семья не считала это занятие достойным дворянина. Мальчика (Т. Браге было тогда 13 лет) отослали в Копенгагенский университет учиться праву. И хотя он не оставлял своей мечты, однако возможность заняться астрономией получил лишь в возрасте 30 лет, когда возглавил построенную им обсерваторию на одном из островов близ Копенгагена. Здесь ученый в течение более 20 лет подряд проводил важные наблюдения положений небесных тел, сделал ряд крупных открытий. И позднее, когда он был вынужден оставить родную Данию, также продолжал астрономические наблюдения. Это на основе собранных им сведений великий И. Кеплер вывел знаменитые законы движения планет. Аптекарь из города Цюриха в Швейцарии Г. Швабе (это уже начало XIX в.) слыл большим любителем астрономии. Ей он отдавал свободное от работы время. И был вознагражден. Г. Швабе сделал выдающееся открытие одиннадцатилетнего цикла солнечной активности. Заметим, что одновременно ученый занимался ботаникой, написал большой двухтомный труд, посвященный описанию растений. Тем не менее прославился он и вошел в историю науки именно своим астрономическим открытием. Мало что говорило бы потомству имя В. Ольберса, занимайся он только тем делом, к которому его обязывала профессия врача. В. Ольберс, однако, не довольствовался этим и также проводил время в изучении далекого неба. Но не просто наблюдениями небесных тел был занят этот любитель. Он разработал метод вычисления орбит комет, то есть провел сугубо теоретическое исследование и, уже опираясь на него, сделал выдающееся открытие: обнаружил астероиды — малые планеты. Это вообще интересная страница в истории астрономии. Еще задолго до В. Ольберса установили, что между планетами Марс и Юпитер большой разрыв, не соответствующий «плану» строения солнечной системы. По нормам этой системы каждая последующая (считая от Солнца) планета находится от предыдущей на определенном расстоянии. Оно измеряется правилом Тициуса — Боде, которое достаточно громоздко, чтобы здесь его приводить. Но в случае с Юпитером это правило нарушалось. Пытаясь объяснить отклонение, В. Ольберс предположил, что между Марсом и Юпитером должна быть еще одна, неизвестная планета. И тогда никаких отступлений от указанного правила не будет. Подкарауливая таинственную незнакомку, неутомимый В. Ольберс и открыл астероиды. Как стали считать позднее, они осколки некогда большой планеты Фаэтон, потерпевшей кораблекрушение на просторах вселенной и оставившей вот эти едва заметные следы в виде мелких планет. Ныне их обнаружено множество. Далее если учитывать лишь самые большие, то есть с поперечником в десятки километров, то их уже несколько сотен. Последний (по времени, но, видимо, не по счету) астероид обнаружен недавно, в 70-х годах, советской женщинойастрономом. Она пожелала присвоить ему поэтическое имя Катюша. Среди выдающихся астрономов мы находим ученых, пришедших и из гуманитарных областей знания. К примеру, знаменитый русский ученый первой половины XIX века В. Струве. Окончив Дерптский (ныне Тартуский) университет по разделу филологии, он начал заниматься астрономией и математикой. Вскоре защитил диссертацию и стал профессором университета, а затем — директором Дерптской обсерватории. Здесь он и прославился обширными исследованиями двойных звезд и других астрономических объектов. По ведомству дилетантов в астрономии XIX века проходят и многие другие славные фамилии. Например, немецкий исследователь, бывший мелкий служащий торговой конторы Ф. Бессель. Он особенно известен тем, что первым развил теорию солнечных затмений. Ему принадлежит и немало других научных результатов. Среди них выделим одно, не столько выдающееся, сколько любопытное. Это открытие так называемого «личного уравнения». Оно характеризует ошибку, невольно присущую каждому наблюдателю как конкретной личности. Отметкой дилетанта обозначен также знаменитый немецкий ученый И. Фраунгофер. Его именем названы описанные им в начале XIX века темные линии солнечного спектра. Они возникают, как показал И. Фраунгофер, благодаря поглощению света атмосферой Солнца. Однако свой жизненный путь этот исследователь начал учеником стекольщика в мастерской одного из городов Баварии, затем стал служащим и, наконец, владельцем оптической мастерской. И, уже пройдя все это, увлекся астрономией. Но самый удивительный дилетант астрономии, наверное, А. Холл. Он из числа тех, к го не получил никакого систематического специального образования и пришел в астрономию не из другой области знания, а из сферы, вообще далекой от науки. А. Холл плотник. Изучив под руководством жены-учительницы математику, вскоре показал такие успехи, что был приглашен в одну из американских обсерваторий. Здесь и обессмертил себя, обнаружив в 1877 году спутники Марса — Фобос («Страх») и Деймос («Ужас»), Если А. Холл дилетант-самоучка, то другой полюс дилетантизма представлен в астрономии ученым В. Парсонсом, носившим также имя лорда Росса. На свои средства он построил обсерваторию и работал там в собственное удовольствие. Мы узнаем в нем, как видит читатель, «состоятельного дилетанта», заслуги которого перед наукой немалые, и главная — та, что лорд Росс установил спиральное строение многих туманностей. Вообще, откуда только не приходили в астрономию! В числе увлекавшихся ею видим даже служителей церкви. Так, еще в XVI веке пастор Д. Фабрициус в наблюдениях неба обнаружил первую переменную звезду. Это звезды, видимый блеск которых в отличие от остальных подвержен колебаниям. В какой мере открытие Д. Фабрициуса важно, говорит то, что все знания о масштабах расстояний во вселенной, размерах нашей Галактики и других галактик основаны на изучении переменных звезд. Настолько они удобны для исследований. Заметим, что наша страна занимает в этой области ведущие позиции. С 1946 года советские ученые возглавляют международную работу по изучению переменных звезд. В СССР издается лучший в мире «Общий каталог переменных звезд». Знаменитый французский философ XVII столетня П. Гассенди занимался наряду с физикой и механикой также и астрономией. Он экспериментально доказал факт сохранения телами равномерного движения и применил этот вывод к небесным объектам. Однако ни астрономия, ни другие науки не были его специальностью. П. Гассенди — священник, профессор теологии. Кажется, мы привлекли убедительное число имен; перед нами прошли люди самых различных профессий, отдавшие себя астрономии. Если присоединить сюда математиков (А. Клеро, К. Гаусс), механиков (Ж. Даламбер, П. Лаплас), физиков (И. Ламберт, Э. Мариотт), то есть специалистов более близких астрономии, но все же пришедших в нее извне, то окажется, что это поистине наука массовой профессии. И все же, скажет читатель, то были примеры более или менее далекого прошлого. Ныне другие времена и, возможно, другое положение? Однако и наш XX век отмечен подобными же проявлениями. Самое яркое из них — открытие Э. Хаббла. С его именем связано установление знаменитого факта так называемого «красного смещения». Находящиеся за пределами нашей Галактики туманности удаляются от нас. Притом скорость удаления тем выше, чем дальше от наблюдателя находится туманность. Примечательно то, что Э. Хаббл по образованию юрист. Закончил вначале Чикагский, а затем Оксфордский университет, где изучал право Однако вскоре оставил юриспруденцию и пос!упил наблюдателем в обсерваторию, так как давно увлекался астрономией. Несколько позднее мы видим Э. Хаббла уже в числе сотрудников известной обсерватории Маунт Вильсон (США). Здесь он и сделал в конце 20-х годов нашего столетия свое открытие. А вот факты и совсем близкого времени. В 1940 году гимназический учитель из одного английского поселка Д. Олкок увлекся поиском комет. Спустя несколько лет он открыл комету, которая была названа его именем. Вооруженный одним лишь биноклем, любитель продолжал наблюдения за небом. Д. Олкоку посчастливилось обнаружить несколько сверхновых звезд, притом ему удавалось отмечать их появление даже раньше всех профессиональных астрономов мира, располагающих сложными телескопами. Свою последнюю сверхновую звезду он нашел в конце 1976 года. Наконец расскажем об успехах еще одного дилетанта. 5 октября 1975 года японский астроном-любитель X. Мори сделал за одни сутки сразу два открытия. Как обычно, в ту ночь он был на посту в своей «приусадебной» обсерватории. На рассвете обнаружил в одном из созвездий незнакомое тело, которое двигалось. X. Мори заподозрил появление кометы. Однако в справочниках о ней ничего не упоминалось. Надо бы немедленно сообщить об этом в Международный кометный центр. Но ведь еще не утро, а наблюдатель не может покидать свой пост. Около часа спустя астроном вновь отметил «нарушение» в миропорядке. И опять это была новая комета. Тогда же первую из комет, помимо X. Мори, увидели еще два астронома, а вторую — четыре. Однако славу открывателя сразу двух комет за одну ночь японский любитель астрономии не делит ни с кем. Имя X. Мори по праву вписано в название новых комет. Итак, в числе исследователей астрономических явлений обнадуживается немало любителей-дилетантов, непрофессионалов, оставивших заметный след в науке. Вместе с тем небезынтересно отметить, что в ряде случаев, наоборот, астрономы, выступая как дилетанты других наукау, сделали важные открытия. Так, И. Кеплер проявил качества врача, когда в 1611 году создал целое учение о диоптике глаза. Это мудреное медицинское название (оно происходит от греческих слов «диа» — «сквозь» и «оптоман» — «смотрю») означает не что иное, как науку о близорукости, точнее, о причинах близорукости. И. Кеплер установил, что четкое изображение увиденного — заслуга сетчатки глаза. Но это лишь в том случае, если световые лучи, проходя хрусталик и преломляясь в нем, пересекутся как раз на сетчатке. Если же хрусталик остается в сильно выпуклом состоянии, фокус окажется чуть впереди. Тогда изображение получается расплывчатым. Добавим, что в случае дальнозоркости хрусталик, наоборот, слишком растянут и фокус оказывается позади сетчатки. Определенно в разработке причин близорукости И. Кеплером решающую роль сыграло именно то, что он — астроном-наблюдатель — хорошо знал устройство телескопа. Очевидно, аналогия глаза с оптической системой и навела ученого на мысль объяснить нарушение зрения подобным образом. Знаменитый английский астроном-профессионал XIX века Д. Гершель, прославившийся многими открытиями, особенно исследованиями двойных звезд, известен также и как пионер фотографии. Это он обнаружил способность гипосульфита закреплять фотографическое изображение и ввел такие понятия, как «негатив» и «позитив». Интересно, что отец Д. Гершеля, В. Гершель, выдающийся астроном своего времени, был, наоборот, любителем. По профессии он органист и учитель музыки. Наблюдениями же небесных тел мог заниматься только в свободное время. Лишь когда им была открыта планета Уран, он получил должность придворного астронома, а с нею и возможность быть профессиональным ученым. Попутно отметим, что науке известна также его дочь и сестра Д. Гершеля Каролина Гершель — одна из первых женщин-астрономов. Известна же она тем, что открыла 8 комет и 14 туманностей. Кроме того, Каролина неизменно помогала брату в его исследованиях. УЧЕНЫЕ, КОТОРЫЕ СОЗДАЛИ САМИ СЕБЯ Мы обещали рассказать и о таком проявлении дилетантизма, как дилетантизм ученых-самоучек. Их стоит выделить в особую группу потому, что они в еще более резких тонах подчеркивают парадоксальность ситуации «дилетант-специалист». В резких по той причине, что самоучки не получили никакого образования, это люди, которые поистине создали сами себя. О некоторых уже довелось сказать ранее: о М. Ломоносове, В. Франклине, А. Холле. Сейчас назовем другие имена. Об иных из них тоже шла уже речь, но в другой связи. Успехи К. Гаусса в науке столь велики, что еще при жизни ему присвоили титул «короля математиков». Эти слова были выгравированы на памятной медали, выпущенной в 1855 году. В тот год он, к сожалению, и умер. Однако в математику К. Гаусс вошел самоучкой. Сын водопроводчика из немецкого города Брауншвейга, он не располагал возможностью учиться в школе. Самостоятельно проштудировал труды И. Ньютона, Ж. Лагранжа, Л. Эйлера, став «с веком наравне». А вскоре он уже обогнал его, заглянув на многие десятилетия вперед. Интересно, что до 19 лет К. Гаусс еще колебался — быть ли ему математиком или филологом. К последней он питал столь же сильную страсть. Вопрос решился сам собой. Вскоре К. Гаусс сделал одно крупное математическое открытие. Это и определило окончательный его выбор. Не имели специального образования известный норвежский математик начала XIX века Н. Абель и крупный английский математик и логик XIX века, основоположник математической логики Д. Буль. Высшей математикой оба они овладели самостоятельно. В ряду самоучек находим имена и многих других выдающихся ученых. Английский химик Д. Дальтон происходил из бедной семьи ткача. Всеми знаниями он обязан только самообразованию. Его великий соотечественник, блестящий ученый первой половины XIX века М. Фарадей также приобщился к науке благодаря самовоспитанию. Родился в семье кузнеца. После короткого пребывания в начальной школе он 13 лет поступил в обучение к переплетчику. Узнал и другие профессии. Так, работая, юноша одновременно много читал, посещал публичные лекции ученых. Постепенно пришло желание самому испытать свои силы в науке. Обратился к Г. Дэви с просьбой принять его на работу в Королевский институт. В свое время многих шокировало, что Г. Дэви взял в лабораторию не имевшего физического (ни вообще какого-либо систематического) образования М. Фарадея. Более того, вскоре поручил молодому человеку чтение курса лекций, хотя тот был всего лишь простым служителем-лаборантом. Не случайно поэтому говорят, что самое крупное научное достижение Г. Дэви — открытие… М. Фарадея. Нелегким был путь в науку замечательного русского ученого XIX-XX веков П. Лебедева, установившего факт светового давления. Он рано почувствовал влечение к физике, однако из-за отсутствия гимназического диплома не мог поступить в русский университет, поэтому образование добывал, полагаясь лишь на собственные силы. Юноша едет за границу и работает в физических лабораториях ряда западноевропейских университетов. Там он самостоятельно определяет тему научного исследования, защищает диссертацию, а затем возвращается в Россию, где и выполняет свои блестящие работы, принесшие ему мировую известность. Как видим, перед нами проходят славные фамилии. И все же «чемпионом» самоучек, наверное, по праву называют французского естествоиспытателя XIX — начала XX века Ж. Фабра. Нищета заставила его рано покинуть родной дом. «Ты вырос, сын, — сказал мальчику отец, — должен кормить себя сам». Работая кем придется (и пастухом, и грузчиком), юноша упорно овладевал знаниями. Круг интересов Ж. Фабра весьма широк. Неплохо знал математику и астрономию, зоологию и археологию, другие естественные науки, писал стихи. Но это были не мимолетные увлечения. Он получил даже по некоторым наукам ученые степени, например по физике, химии, зоологии, литературе. Однако более всего Ж— Фабр любил изучать поведение насекомых. Этим занимается наука энтомология. Он посвятил ей всю свою долгую, более чем девяностолетнюю, жизнь. Его усилия венчает десятитомное сочинение «Энтомологические воспоминания», в которых, по признанию специалистов, содержится сведений больше, чем добывают порой целые коллективы, оснащенные лабораториями и первоклассным оборудованием. Конечно, в те давние времена наука не уходила еще столь далеко в глубь природы и не возносилась так решительно ввысь абстракций, как она это делает ныне. Потому и успехи самоучек прошлого так же, как и других дилетантов-любителей, возможно, не кажутся столь уж парадоксальными. Однако и наше время дает немало аналогичных, хотя, быть может, и не всегда таких же ярких примеров. В начале XX века на небосводе математической науки взошла яркая звезда, к сожалению, рано потухшая. То был выдающийся индийский ученый Ш. Рамануджан. Его открыл Г. Харди, которому он выслал на суд свои работы, до того уже отклоненные двумя крупными английскими же математиками. Но более всего интересно то, что Ш. Рамануджан начинал трудовую жизнь бедным конторским служащим. Образования получить не смог и все постигал сам. Фактически он не имел никакого представления о точности современного научного вывода, более того, по-видимому, вообще не понимал, как проводить доказательство. Основным положениям математики его и обучил Г. Харди. Однако, несмотря на это, Ш. Рамануджан раскрыл, точнее даже сказать, «почувствовал» (вспомним поразительные возможности интуиции) новые перспективные возможности в теории чисел. Эта теория насчитывает тысячелетия, ею занимались все великие математики. Но талантливый индус увидел то, чего не замечали ранее все. Английский биолог-генетик Р. Фишер не имел математического образования. Между тем его книга по математической статистике вошла, можно сказать, в золотой фонд науки, утвердившись как наиболее ценное пособие по статистическим методам. Вначале книга не была принята ученым миром. Она подвергалась уничтожающей критике со стороны специалистов-математиков. Это как раз и объяснялЪсь тем, что автор самоучка, не владевший ни стилем, ни методами, присущими хорошему математику. Все же новые представления пробили стену непонимания. Книга выдержала несколько изданий и дала, по оценкам сведущих людей, «неизмеримо больше, чем все учебники по математической статистике». И это, несмотря на то, что автор фактически дилетант (а может быть, именно потому, что дилетант?..). Конечно, в наше время уже трудно отыскать самоучек наподобие тех, что встречались в пору классической эпохи. Все же в развитых странах, задающих тон в науке, образование стало более доступным, чем ранее. Но как тут не отметить ученых, хотя и прошедших курс обучения, однако овладевших рядом сложных дисциплин самостоятельно. Среди них советский физик, академик Я— Зельдович, который не имеет вузовского диплома и науку постиг сам, а также крупнейший советский физик Л. Ландау. Правда, Л. Ландау учился в школе и в вузе, притом сразу на двух факультетах. Но высшей математике его в школе не обучали, а освоил он ее в очень раннем возрасте. Л. Ландау как-то заметил, что не помнит себя не умеющим интегрировать. Уже в 14 лет он пытался поступить в университет. Не приняли, посчитали, что молод. Поступил чуть позже. Надо ли говорить, что и в университете будущий ученый занимался (притом на двух факультетах сразу) не тем, чем были заняты его сокурсники, а также, как и в школе, самостоятельно изучал новейшие разделы физического и химического знания. Читателю, может быть, небезынтересно будет узнать, что и знаменитый английский ученый современности, один из создателей кибернетики, У. Эшби, не имел ни математического, ни физического образования. Вообще, по профессии он врач. Полжизни проработат в психиатрической больнице, а потом увлекся новой отраслью знания. Сам овладел математикой, теорией информации, всем комплексом дисциплин, необходимых для понимания процессов в кибернетике, и затем получил здесь выдающиеся результаты. Как видим, не только ктассическая, но и современная на"ка полна примеров открытий, сделанных дилетантами. Американские науковеды проводили в середине XX века такой эксперимент. Они подобрали две группы научных работников и предложили каждой одну и ту же исследовательскую задачу так, что в решении задачи ученые одной группы оказались специалистами, а ученые другой группы — дилетантами. Обнаружилось, что вторые не только успешно справились с проблемой, но и нашли оригинальных решений больше, чем специалисты. Но, может быть, неудачно подобрали состав первой группы? Тогда условие эксперимента обернули и задание формулировали так, что специалисты оказывались дилетантами, а дилетанты — специалистами. И что же? Снова похожий результат. Более того, осознание роли дилетантов отразилось на организационных формах современной науки. Ныне традиционное обособление ученых, когда они работали каждый сам по себе, индивидуально, постепенно отходит в прошлое. Побеждают коллективные начала. Как правило, научные исследования ведутся группами, в, которые включаются ученые разных профилей, то есть наряду со специалистами по дангой отрасли видим там же и дилетантов. Такой коллектив считается более продуктивным в выдвижении новых идей, нежели когда объединяются одни лишь специалисты. На этом заканчиваем рассмотрение фактов (пока лишь просто фактов), подтверждающих парадоксальный вывод о плодотворном влиянии на развитие познания любителей, неспециалистов, исследователей, пришедших со стороны. Действительно, оказываются слишком заметными вложения, сделанные дилетантами, людьми, явившимися в некоторую отрасль, а то и в науку вообще, извне. Не зря, видно, кто-то обронил: «Когда-нибудь случайный прохожий удивит науку больше, чем она удивляет нас сейчас». А теперь настала пора объяснить, в чем же причины столь странного явления. Казалось бы, в такой сфере, как научное исследование, предполагающей хорошее знание предмета, образованность, эрудицию, не должно быть места дилетантству Не освоив того, что уже добыто, как можно идти вперед? Оказывается, можно. Далее мы и попытаемся рассказать, почему это происходит. «ШЕСТЕРНИ ВООБРАЖЕНИЯ ВЯЗНУТ В ИЗБЫТКЕ ЗНАНИЯ» Напомним, что дилетант характеризовался нами как человек неосведомленный, мало информированный в некоторой дисциплине, но проявивший к ней заинтересованность. Наоборот, специалист предстает во всеоружии знаний и умений, как исследователь, которому ведомо все в той области, где он вырос и работает. Однако именно это обстоятельство и оборачивается неожиданной на первый взгляд стороной: неосведомленность — преимуществами для дилетантов, а информированность — утратами для специалистов-профессионалов. Конечно, так бывает далеко не всем да, но псе же в ряде случаев (которые, как мы видели, отнюдь не редки) бывает. Вначале сошлемся на прямые свидетельства самих ученых, а также на результаты изучавших этот вопрос исследователей-науковедов. Английский химик конца XIX — начала XX века У. Рамзай, обсуждая затронутый здесь вопрос, отмечал, что слишком обширные знания в специальной области становятся скорее препятствием в процессе научного творчества, чем помогают ему. У нас есть основания считаться с мнением У. Рамзая, крупным ученым в области органической и физической химии. Ему принадлежит разработка метода определения молекулярного веса жидкости по величине ее поверхностного натяжения. Большими успехами отмечены его исследования в области инертных газов. Он открыл гелий, а также совместно с Д. Рэлеем — аргон и совместно с М. Траверсом — криптой, ксенон и неон. Эти открытия еще раз подтвердили выдающееся значение периодического закона Д. Менделеева. Вместе с тем У. Рамзай известен и как изобретатель. Им сконструированы, например, микровесы, высказана идея подъемном газификации угля, получившая в свое время высокую оценку В. И. Ленина Имеются и другие свидетельства того, что чрезмерная информированность не идет на пользу исследователю. Начавший вопрос о стимулах научного творчества советский философ Б. Грязнов отмечает следующий факт. Среди математиков XX века, утверждает Б. Гря-шов, широко распространено мнение, что излишняя эрудиция и знание истории науки не помогают, а мешают открытию нового. Обычно в качестве важнейших характеристик ученого выделяют три— эрудицию, творческие способности и деловую активность, то есть трудолюбие. По мнению французских исследователей, наиболее желательным является сочетание не всех трех признаков, а только двух последних, то есть творческих способностей и трудолюбия. Па долю ученых, обладающих именно этими двумя свойствами, и падает, согласно данным науковедов, большинство научных открытий. К сожалению, таких ученых мало. Их всего лишь 3 процента в общей массе научных работников. Таким образом, эрудированность в качестве показателя творческих возможностей исследователя не только отходит на второй план, но даже квалифицируется как нежелательное явление. Обилие знаний, которыми располагает специалист в своей области науки, порой действительно встает препятствием на его пути. Недаром же наш парадокс имеет другое название — «дилетант-эрудит». Постараемся пристальнее рассмотреть сам механизм отрицательного влияния эрудиции. Перенасыщенность информацией имеет нежелательные постедствия прежде всего потому, что мешает увидеть исследуемое явление в целом, в его закономерных чертах. Но здесь мы определенно перекликаемся с выводами, полученными при анализе «парадокса изобретателя», и рискуем даже в чем-то повториться. Вместе с тем, хотя рассматриваются разные парадоксы, между ними немало общего, поскольку они описывают один и тот же творческий процесс. Единственное, что можно обещать — постараться в этих повторяющихся ситуациях сохранить в оценке каждого парадокса особый угол зрения, свой специфический срез. В случае, занимающем нас сейчас, речь идет уже не просто о том, что чрезмерная эрудиция ведет к утрате способности осознавать частную задачу как общую. Появился новый оттенок. При обилии знаний специалист, точнее — узкий специалист, порой заслоняет в исследователе разносторонне мыслящую личность, угнетает фантазию, которая скорее посещает человека, не обремененного обширными профессиональными познаниями. Здесь преимущество получают дилетанты. За плотным кордоном специальных сведений ученый теряет нередко умение поразить цель. Отдельные факты и фактики, тончайшие детали не только сосредоточивают его внимание по разным направлениям, не давая сойтись на главном. Они также мешают привлечь «постороннюю», неспециальную точку зрения. …Как-то Г. Селье встретился с американским физиком Г. Морану. Тот показал приборы, при виде которых Г. Селье был потрясен. Но он еще больше удивился, когда Г. Морану заявил, что создает электронный микроскоп, который будет увеличивать в 2 000 000 раз. Это впечатляло. Однако, придя в себя, Г. Селье оценил намерения изобретателя по-иному. Его озарило: «Подумать только, этот гениальный человек употребляет свой громадный интеллект и знания для того, чтобы сконструировать инструмент, который уменьшит поле его зрения в 2 миллиона раз!» Действительно, тут есть о чем задуматься. Как бы в самом деле «узковедомственный» подход не подавил способность видеть предмет многогранно, с разных позиций, способность принимать его как целое и учитывать внешние, казалось бы, не относящиеся к делу обстоятельства. А теперь постараемся более детально рассмотреть волнующую нас проблему: чем же именно мешает исследователю обилие специальной информации. Нередко наличие большой массы знаний, которыми надо овладеть, настолько обескураживает ученого, что у него опускаются руки, он теряется. О В. Гамильтоне, том самом, который ввел гиперкомплексные числа — триплеты, рассказывают, ч го он прежде, чем решать какой-либо вопрос, имел обыкновение основательно знакомиться с имеющейся литературой. При этом так много читал и делал столь обширные выписки, что работа выходила за все разумные границы. Ученый обнаруживал вдруг беспомощность в доведении исследования до конца: накопленный материал подавлял его. Он и сам, бывало, поражался объему собранных им сведений. «Несомненно, — замечает один из его биографов, — читай он меньше, он создал бы больше». Исследователь должен уметь ограничивать себя. Необязательно же изучать горы книг досконально, во всех подробностях обследуя вопрос. На определенном этапе стоит рискнуть на обобщения, еще не вникнув во все детали анализируемого явления. В этой связи характерно замечание П. Капицы. Когда Э. Резерфорд объявил в начале нашего века радиоактивность проявлением распада материи, он, собственно, еще мало что об этом знал. Но от Э. Резерфорда и не требовалось глубокой эрудиции, чтобы увидеть новое. «На таких начальных этапах развития науки, — подчеркивает П. Капица, — точность и пунктуальность, присущая профессиональным ученым, может скорее мешать выдвижению такого рода смелых предположений». А порой незнание каких-либо фактов способно сослужить хорошую службу и вовсе при странных обстоя гель ствах. Выводя свои знаменитые уравнения электродинамики, Д. Максвелл опирался в определении скорости свега на данные, полученные еще французским физиком И. Физо. По они были ошибочными, поскольку согласно И. Физо свет в движущейся среде должен получать дополнительную скорость. Как было показано позднее опытами А. Майкельсона, скорость света всегда постоянна: правило сложения скоростей, справедливое для обычных механических движений, здесь не действует, и никакого увеличения скорости света мы не получим. Историки науки считают, что, если бы Д. Максвелл знал истинное состояние дел, он едва ли отважился бы тогда предложить свои формулы, как раз включавшие составным компонентом скорость света. Правда, его уравнения оказались справедливыми и с точки зрения позднейших завоеваний науки. Но в те времена учет этих данных, знай их Д. Максвелл, повлек бы за собой полный пересмотр его взглядов, поскольку он исходил из гипотезы механического эфира, как среды, в которой движется свет. Аналогичная обстановка сопровождала и открытие И. Кеплером эллиптической формы движения планет. Ученый знал тогда далеко не точные данные. Он не мог учесть возмущений, которые стали известны позднее. А если бы знал? Наверное, ему было бы гораздо труднее усмотреть в орбитах планет правильные формы эллипса. И без того И. Кеплер, как мы помним, выдержал нелегкую борьбу с самим собой. Научное творчество — продукт независимости мышления. Ум исследователя не должен быть скован предвзятыми оценками и суждениями. Лишь тогда он открыт для новых идей. Поэтому чем больше человек знает, тем скорее он может оказаться в плену у старого. Как тут не вспомнить немецкого физика XVIII века Г. Лихтенберга, более известного своими афоризмами и парадоксами. Он говорил: «Люди, очень много читавшие, редко делают большие открытия». В самом деле, открытию предшествует глубокое созерцание вещей, когда надо думать самому и поменьше обращаться к чужому слову. Не зря же сказано: Zu erfinden, zu erschlissen, Не потому ли некоторые руководители научных коллективов сознательно ограждают коллег от информации, что она способна погасить творческие начинания, притупить интерес к поиску. Например, формулируя перед аспирантом тему исследования, запрещают ему чтение литературы до тех пор, пока он сам не придет к какому-то заключению. А уж когда оно найдено, можно не опасаться внешних влияний. Напротив, тогда чужие точки зрения способны помочь в уточнении собственной. Таким образом, у нас, кажется, есть основания признать, что нередко слишком обширная осведомленность ложится грузом на плечи исследователя. Это и дало повод современному английскому ученому, знакомому нам скорее по его фантастическим романам, А. Кларку заявить: «Шестерни воображения вязнут в избытке знания». Тому, кто много знает, труднее выдумывать, он охотнее обращается за советом к кладовым человеческой памяти. Герой одноименной повести французского сатирика ф. Вольтера Простодушный был в высшей степени оригинальный ум. Однако он ничему не учился и потому именно был свободен от всего, что препятствует изобретению новых идей. Поистине, если хочешь сохранить свежесть мышления, не обременяй его познаниями — таков подтекст Ф. Вольтера. СПЕЦИАЛИСТЫ ВРЕДНЫ, ПОТОМУ ЧТО… Нежелательные последствия эрудированности заключаются не просто в том, что изобилие знаний гасит воображение. Вместе с усвоением знаний специалист усваивает и определенные образцы, нормы мышления, применяемые при решении познавательных задач. Иначе говоря, он усваивает парадигмы века. Но ведь со временем парадигмы изживают себя. Поэтому, обогащая наш рассудок, знания вносят и предрассудок. Как говорят немцы, высказывая суждение (Urteil), мы внушаем вместе с ним и предубеждение (Vorurteil). В этом смысле любое знание таит опасность оказаться препятствием на пути развития нового. Значит, если научная традиция способна помешать рождению свежих идей, полезно отгородиться от традиции. Вообще, замечает А. Уайтхед, «наука, которая не решается забыть своих предшественников, бесперспективна». Конечно, ученый должен знать добытые другими результаты, но слишком упорные старания приносят эрудицию, а хорошая эрудиция невольно толкает к тому, чтобы искать спасение в готовых рецептах. Рассказывают, что И. Павлов специально отсекал пути обращения сотрудников за помощью к устоявшимся положениям науки. Стремясь расшатать традиционную терминологию, он запретил в период исследований условных рефлексов употреблять в лаборатории такие выражения, как «собака узнаёт», «догадывается», «чувствует». Лишаясь их, физиология освобождалась и от старых представлений, расчищая место для истолкования опытного материала в духе новой теории. Издержки эрудиции особенно внушительны, когда исследователь, хорошо владеющий методами и законами науки, не находит готового ответа на вопрос. В этом случае специалист просто объявляет, что задача неразрешима, и даже не пытается ее решать. Дилетант же не знает этого и потому, стремясь найти ответ, часто приходит к открытию. Высказывание, которое мы далее приведем, стало достаточно широко известным, и все же к нему обратимся: «Все знают, что это невозможно. Приходит один чудак (будем говорить: „дилетант“), который этого не знает, он и делает открытие». Мы воспроизвели его потому, что у нас есть к нему хорошие иллюстрации. После того как итальянец Г. Марконн осуществил вслед за русским физиком А. Поповым передачу радиосигнала, он стал отмечать распространение волн на все большие и большие расстояния. Вместе с тем крепла и наконец утвердилась его вера в возможность послать сигнал даже через Атлантический океан. Дело лишь, как он полагал, в достаточно мощном передатчике и чувствительном радиоприемнике. Но эта идея могла увлечь тогда только профанов, не знающих азов науки. Против затеи Г. Маркони выступили специалисты. Кому же неизвестно, поучали они, что несущие сигнал радиоволны, подобно световым лучам, распространяются прямолинейно? Поэтому они не смогут обогнуть Землю и попросту исчезнут в пространстве. Г. Маркони едва ли знал науку в той мере, чтобы проникнуться уважением к ее законам, вообще, чтобы серьезно считаться с ними. Он простой радиотехник и энергичный предприниматель, не получивший солидного технического образования. Ознакомившись с идеями Г. Герца по электромагнитным волнам, углубился в опыты по беспроволочному телеграфу и неожиданно получил результат. Поэтому, зная возражения специалистов, Г. Маркони попросту отмахнулся от них. И хотя он был не прав с точки зрения господствующих взглядов, ему удалось в 1897 году осуществить свою идею. Ни Г. Маркони, никто другой не догадывались тогда о существовании особого слоя атмосферы — ионосферы, которая способна отражать радиоволны, возвращая их Земле. Ионосфера была предсказана в 1902 году американским и английским учеными, в честь которых и названа слоем Кеннели — Хевисайда. Пример поучителен. Знай Г. Маркони законы распространения радиоволн фундаментально, он, может быть, и не рискнул бы пытаться передавать сигнал через Атлантику. Во всяком случае, оставаясь в рамках строго логических рассуждений, изобретатель едва ли получил бы результат. А с другой стороны — не будь одержимого дилетанта Г. Маркони, возможно, пришлось бы подождать и с открытием ионосферы. Ясно, что передача сигнала через океан подтолкнула выдвижение гипотезы сб особом отражающем слое атмосферы. Аналогичная ситуация сложилась в 20-х годах нашего века, когда американский физик Э. Лоренс выступил с идеей создания циклотрона — установки для ускорения некоторых элементарных частиц. Автор встретил мощное сопротивление специалистов, полагавших — и не без оснований, — что циклотрон не будет работать ввиду очень малого коэффициента полезного действия. Логически рассуждая, они были правы. И гем не менее установка заработала. Оказалось, что заявили о себе никем не предвиденные эффекты. Магнитное поле, возникавшее при определенных режимах работы циклотрона, вносило дополнительную энертию, избавляя прибор от низкого КПД, которое предсказывали ученые. Наконец, еще одно свидетельство того, насколько бывает порой полезным, когда первооткрыватель преодолевает барьер специальных знаний тем, что просто их не знает. Здесь мы вернемся к обстоятельствам, сопровождавшим открытие Г. Селье явления стресса. Напомним читателю, что тогда Г. Селье, еще молодой человек, задумался: почему медицина бросает все силы на распознавание и лечение конкретных проявлений болезни и не обращает внимания на общие признаки, сопровождающие каждую болезнь? Его взгляд еще не был искажен общепринятыми установками медицинского мышления, и потому он заинтересовался этим. "И если бы, — пишет Г. Селье, — я знал больше, я бы никогда не стал задавать вопросы. Ведь все происходило так, как должно быть, то есть как делает «хороший врач». Однако не искушенному в науке уму было непонятно, потому что он просто не знал. «Знай я больше, — заключает Г. Селье, — меня наверняка остановило бы самое мощное препятствие на пути к совершенствованию: уверенность в собственной правоте». Имей он время поглубже войти в науку, ему бы все разъяснили современные медицинские теории. Отсюда и опасность узкой специализации. Известный американский миллионер Г. Форд, очевидно, имел основания, чтобы заявить: специалисты вредны, ибо они скорее других найдут недостатки новой идеи и выдвинут тысячу возражений против, чтобы загубить любое хорошее дело. «Они очень умны и опытны, что в точности знают, почему нельзя сделать того-то и того-то; они видят пределы и препятствия». Как стопроцентный предприниматель, Г. Форд извлекает из этих рассуждений практические выводы. «Если бы я хотел, — заявляет он, — убить своих конкурентов нечестными средствами, я предоставил бы им полчища специалистов. Получив массу хороших совеюв, мои конкуренты не могли бы приступить к работе». Кое в чем Г. Форд, по-видимому, сумел обратить свои слова в действия. Он признается, например, что никогда не брал на службу чистокровных знатоков, потому что от них больше вреда, чем пользы. В наши дни осторожный специалист, желающий избежать ответственности за принятие решения, имеет еще одну лазейку, порожденную особенностями современной науки. Новое появляется ныне обычно в пограничных районах на стыке проблем и направлений. Сплошь и рядом трудно определить, где кончается одна отрасль и начинается другая. Знающий свой предмет специалист тонко изучил все его стороны, великолепно ориентируется в деталях, постиг литературу. Такой человек, начиненный, по выражению Н. Винера, своим «профессиональным жаргоном», всегда готов любой вопрос, хотя бы чуть-чуть переступающий узкие рамки его профиля, оценить как состоящий в компетенции соседа. Сосед же работает через три комнаты дальше по коридору. К нему и надлежит обратиться. Но нет уверенности, что тот признает это входящим в круг его интересов и не посоветует пройти еще дальше. Недаром же говорят, что нынешние специалисты часто похожи на замурованных отшельников, которые общаются друг с другом на непонятном наречии. Не только забавно, но и поучительно взглянуть с высоты современного состояния науки и техники на специалистов прошлого, решительно, во всеоружии знаний своей эпохи сопротивлявшихся появлению нового. Каких только аргументов они не привлекали… Возьмем, к примеру, железнодорожное ведомство, которое и само даже в наши дни отличается удивительно стойким консерватизмом. Сколько хороших идей было здесь загублено! Начать хотя бы с того, как Д. Араго выступил против сооружения железных дорог, а его английские коллеги по науке отвергли паровоз Стефенсона. Мотив был тот, что при большой скорости колеса будут скользить. Когда железные дороги уже появились и встал вопрос о перевозке по ним люден, специалисты тут же воздвигли преграды. Первые паровозы развивали большую по тем временам скорость — до 15 километров в час. Так вот, всерьез обсуждался вопрос, смогут ли пассажиры выдержать столь «высокие» скорости. ПО ЗАКОНАМ ПРИРОДЫ ЭТОНЕ ДОЛЖНО ЛЕТАТЬ Конечно, было бы заманчиво понаблюдать проявления нашего парадокса в истории какой-либо отрасли знания. Мы обратимся в связи с этим к теории и практике развития летательных аппаратов — области, которая как раз изобиловала смелыми идеями и остро нуждалась в их поддержке. Мечта о полетах в небо преследовала человека, наверное, с того дня, когда он научился мечтать. На рубеже последних веков эти фантазии наконец обрели вполне реальные очертания. Все больше смельчаков отваживается подняться в воздух. Но обратимся к мнению специалистов. Одним из первых выступил известный французский астроном XIX века Ж. Лаланд. Он полагал невозможным создание летательных аппаратов тяжелее воздуха Позднее аналогичное мнение высказал талантливый немецкий изобретатель второй половины XIX века Э. Сименс. Ею заключение, безусловно, имело вес, ибо с ним считались, и это не могло не сказаться на прогрессе научно-технической мысли. Так же и Г. Гельмгольц оказался тормозом на пути нового, когда в 70-х годах прошлою столетия пришел к выводу о бесперспективности полетов механических систем. Его заключение произвело впечатление в руководящих и финансовых кругах Германии, которые и без тою относились к таким полетам настороженно. Подобное же отношение сложилось и в других странах. Однако, несмотря на это, молодая отрасль техники — авиация — набирала силу, правда, пока оставаясь на земле. С нею приходилось считаться. Поэтому ряду видных ученых предложили в конце XIX века прокомментировать возможности создания летательных аппаратов. И что же? Мнение подавляющей части было отрицательным. Как правило, ссылались на законы природы. Например, С. Ньюком. Это крупнейший американский астроном того времени, профессор, руководитель астрономического морского ежегодника США. Предложенные им числовые значения для некоторых астрономических явлений используются и поныне. Вооружившись данными науки и массой расчетов, С. Ньюком утверждал, что полет на механизмах тяжелее воздуха невозможен, они не смогут даже оторваться от земли. Не прошло и нескольких лет, как братья Уилбур и Орвилл Райт благополучно завершили в 1903 году на «запрещенном» механизме полет в воздух. Верно, они произвели лишь несколько подъемов общей продолжительностью 59 секунд, но то был все же полет на «аппарате тяжелее воздуха». Еще раньше, в конце XIX века, поднялся самолет русского изобретателя А. Можайского. Заметим, что и братья Райт и А. Можайский происходят из дилетантов. Американские конструкторы начали свою трудовую жизнь как владельцы типографии. Позднее содержали мастерскую по ремонту велосипедов, а йотом, после гибели в 1896 году немецкого планериста О. Лилиенталя, заинтересовались авиацией, изучили работы в этой области и занялись созданием аэроплана. Они ставили на планеры двигатель внутреннего сгорания, постепенно совершенствуя свои конструкции. Так же и А. Можайский не был специалистом в этой области. Он морской офицер. Шел к изобретению, изучая полеты птиц, воздушных змеев, на которых, кстати, поднимался и сам. Однако даже после этих первых успехов С. Ныоком не сдавался. Он заявил, что как средство перевозки людей авиация, безусловно, не годится. Быть может, летательный аппарат построить удастся, «но и пилота и пассажира он не подымет». Самолет даже с одним человеком летает на пределе технических возможностей. Другой специалист, известный американский астроном У. Пикеринг, в начале XX века, когда машины уже уверенно уходили в воздух, доказывал невозможность дальних перелетов. Напрасны надежды, говорил он, например, когда-либо пересечь в самолете океан. Сопротивление специалистов сказывалось во всем. Конечно же, не без их влияния американский конгресс как раз в тот год, когда полетели братья Райт, принял такой законопроект. Вооруженным силам в дальнейшем запрещалось финансировать работы по созданию летающих машин. Одновременно патентное бюро США объявило, что оно не будет принимать заявки на летающие аппараты. То есть поступили совсем как с идеей создания «вечного двигателя», претензии на изобретение которого уже давно перестали рассматривать. А. Можайский тоже ломал сопротивление специалистов. Правда, военное министерство вначале ассигновало средства на проведение опытов (может быть, потому, что в комиссии, готовившей вопрос, участвовал Д. Менделеев?). Но когда зашла речь о постройке самолета, новая комиссия сочла принципиально неверным намерение А. Можайского конструировать аппарат с неподвижными крыльями. Полаяли, что крылья должны быть машущими… Получив отказ, изобретатель начал создавать машину на свои средства. А теперь «пересядем» на ракеты. Специалисты здесь были тоже начеку. Они подстерегли и рождение реактивного двигателя, воздвигнув на его пути трудно преодолимые барьеры. Первые идеи полета на ракетах и межпланетных путешествий появились еще во второй половине XIX века. И не только в романах Ж. Верна и других фантастов, но и в научной литературе, например в работах Р. Годдарда. Однако ряд ученых, считавших себя специалистами, хотя эта отрасль знания еще и не стала на собственные ноги, выступил против. Они сослались на многочисленные законы природы, по которым ракеты не должны летать. Считали, например, что в космическом пространстве, лишенном атмосферы, аппарату не от чего будет отталкиваться. Как выяснилось позднее, это представление было ошибочным. Оно не учитывало, что количество движения горячих газов, отбрасываемых назад от корпуса ракеты, противостоит количеству движения самого корпуса. Это и заставляет его двигаться вперед. Специалисты, конечно, не обошли вниманием отца теоретической космонавтики — К. Циолковского. Его слишком смелые, ломающие привычные представления мысли не поняли многие ученые того времени. Среди них, к сожалению, и Н. Жуковский, который и сам развивал достаточно оригинальные идеи. В этой истории опять же характерно борение дилетанта со специалистами. К. Циолковскому не довелось получить систематического образования. В 9 лет он, перенеся осложнение после скарлатины, оглох. Был вынужден оставить школу и все знания приобрел самостоятельно. То есть перед нами типичный дилетант-самоучка. По неведению К. Циолковский часто находил решения отнюдь не новые. В то же время именно незнание предмета приводило его к идеям оригинальным, странным, зато и значительно обгонявшим свою эпоху. В самом деле. Говорить о космических полетах в те дни, когда еще и летать-то не умели, когда не было даже самолетов, — это ли не проявление необычности замыслов! Но вот приближается наше время. Все ближе возможность подняться в космос, а с нею тем сильнее сопротивление со стороны особо эрудированных специалистов. В 1926 году английский профессор А. Бикертон отозвался об этом так: «Глупейшая идея. Пример тех предельных абсурдов, до которых… доходят ученые, работающие в „мысленепроницаемых отсеках“, в полной изоляции друг от друга». Если уж кто и оказался непроницаем, так это сам А. Бикертон. Да что 1926 год! В середине XX века бесспорный специалист, английский королевский астроном Р. ван дер Вулли выступил с заявлением, в котором характеризовал мысль о космических полетах «совершенно неосуществимой». Буквально за год до запуска первого спутника, проведенного советской наукой в 1957 году, он решительно объявил, что старты в космос «святая чепуха». Как видим, часто обстановка складывается так, что хорошая эрудированность не помогает, а сковывает. И наоборот. Незнание или слабое знание предмета обеспечивает в этой области успех. Так что же, спросит читатель, выходит, специальная осведомленность, тонкий профессионализм мешают и даже вредят, а движение науки к новым рубежам обеспечивают люди, в этом вопросе мало информированные, дилетанты, самоучки? Здесь необходимо подчеркнуть следующее; впрочем, эту идею мы постоянно, в продолжение всего повествования отстаиваем. Открытие не дается человеку, к этому не подготовленному, не выстрадавшему результат. Вместе с тем любое крупное достижение ломает старые представления науки, утверждая новое. Новое же нельзя получить, оставаясь в плену господствующих воззрений, нельзя логически вывести из прежних законов, используя прежние методы. Поэтому специальные знания тут не всегда помогут. Наоборот, их надо преодолеть, подойти к проблеме непредвзято. Но где же взять эту непредвзятую точку зрения? В общем-то, где угодно, только не в родных стенах своей специальности. Вот и получается, что человек со стороны, некий «случайный прохожий» способен удивить нас совершенно неожиданным решением. Читатель видит, что здесь мы смещаем акценты. Если до сих пор речь шла преимущественно об отрицательной роли специалистов и специального знания, то сейчас постараемся осветить проблему творческого поиска с несколько иной позиции. Наша цель — показать, в чем же состоит значение неспециального подхода к задаче, как это помогает в ее решении. МАТЕМАТИЧЕСКИЕ ДОСУГИ Взгляд извне, со стороны, как убеждает не только научный, но и житейский опыт, часто приносит неожиданно плодотворный результат. Вот один из примеров внешней подсказки, который, кажется, неплохо иллюстрирует нашу мысль. Верно, он взят не из области научных, но все же проблемных ситуаций, для решения которых нужны также творческие старания. В одном административном здании от служащих поступало много жалоб на работу лифтов. Говорили, что их приходится долго ждать, что люди попусту про-стаивают время и т. д. Дирекция решила обсудить этот вопрос. Группа инженеров, специалистов по лифтам, вникла в суть дела и внесла предложения. Хотя на совещании инженеры энергично отстаивали свое мнение, оно не удовлетворило администрацию. Тогда попросил слова начальник отдела личного состава, психолог. Он тоже ознакомился с вопросом и кое-что принес. Правда, в делах по эксплуатации лифтов начальник отдела был дилетант, тем не менее свою точку зрения высказал. Она состояла в следующем. Сами по себе задержки лифтов, как показывает хронометраж, незначительны. Жалобы же вызваны совсем другим: люди томятся бездельем во время их ожидания. По предложению выступавшего около лифтов поставили… зеркала, п жалобы тут же прекратились. Конечно, в решении научных задач обстановка посложнее. Но и здесь нужные идеи часто рождаются у посторонних, приходят из других отраслей знания. Нередко важные исследования задерживаются просто по причине неосведомленности о результатах, ставших достоянием соседних наук. А. Герцен еще в середине прошлого века писал: «Труд и усилия тратятся для того, чтобы проложить тропинку там, где имеется железная дорога». Кстати, эта работа А. Герцена называется «Дилетантизм в науке». Ученый, желающий достичь успеха, не должен замыкаться в рамках собственной дисциплины. Всегда полезно расширить область поиска за счет результатов, добытых в смежных отраслях. Не напрасно, видимо, сказано: «Химик, который знает только химию, едва ли знает ее». Эти слова приписывают уже упоминавшемуся немецкому физику и писателю Г. Лихтенбергу, оставившему яркие замечания о науке. Близкие мысли выражены еще ранее великим французским математиком XVII века Б. Паскалем. Он довольно категоричен: «…я делаю мало различия между человеком, который является только геометром, и ловким ремесленником». А далее следуют характеристики, вовсе убийственные: «Скажут: это хороший математик, но мне нечего делать с математиком: он примет меня за теорему». Соблазнительно предположить, что человек, не обремененный специальными познаниями, но достаточно глубоко мыслящий, чтобы понять некую проблему, получает преимущества, скажем, перед эрудитом. И мы таких людей знаем. Характерно в этой связи признание М. Борна. «Меня никогда не привлекала возможность, — пишет он, — стать узким специалистом, и я всегда оставался дилетантом даже в тех вопросах, которые считаются моей областью». Ссылаясь на свой опыт, М. Борн отмечает далее, что «…для написания полноценной научной книги нет нужды специализироваться в данной области, необходимо лишь схватить суть предмета и потрудиться в поте лица». Мы полагаем, это достаточно сильное заявление в том смысле, что оно льет воду на мельницу нашего парадокса. И сильное потому, что как ученый, творец М. Борн не нуждается в рекомендациях. Об одном из крупнейших современных физиков-теоретиков, М. Гелл-Манне, рассказывают, что изредка, примерно раз в месяц, он консультирует одну промышленную фирму в США. И хотя здесь нет привычной ему физики, компания считает для себя полезным приглашать ученого. Она покупает не его специальные знания, а умение отвечать на чужие вопросы. Видимо, это выгодно нанимателям. Чтобы еще сильнее оттенить наши выводы, обратимся к наиболее ярким, бесспорным дилетантам. Такими как раз и являются дилетанты, как мы их определили, «вертикального смещения». До сих пор речь шла о любителях, кочующих внутри естествознания. А сейчас мы решаемся заявить о фактах, рождающихся в глубинах науки, следовательно, более зримо демонстрирующих наш парадокс. Дело касается исследователей, перешедших из гуманитарной области в естественнонаучную, равно как и естествоиспытателей, явившихся в гуманитарные сферы. Вначале расскажем о первых, тех, кто, не имея соответствующего образования, сумел заявить о себе в точных науках, да еще в таких, как математика и физика. При этом на первых порах заглянем в более или менее далекое прошлое. Блистательный ученый XVII века, гордость французской и мировой науки П. Ферма. Его вклад в математику поистине монументален. В частности, в теории чисел (одним из создателей которой он является), в развитии метода координат и ряде других разделов. Недаром же одна из теорем называется «великая теорема Ферма», остающаяся до сих пор для общего случая, к сожалению, недоказанной, несмотря на простоту формулировки. Считают, что полное доказательство теоремы требует создания новых, более мощных методов. Кстати сказать, за ее решение была в свое время назначена большая премия, позднее, в конце первой мировой войны, аннулированная ввиду нездорового интереса к доказательству этой теоремы со стороны совершенно несведущих людей. Впрочем, есть и «малая теорема Ферма», которая, несмотря на такое название, является одной из основных в теории чисел. Интересно, что П. Ферма дал ее без доказательства, что, кстати, несет убедительные свидетельства в пользу интуиции. А первое доказательство предложил лишь в XVIII веке петербургский ученый Л. Эйлер. Как видим, П. Ферма — один из крупнейших умов в математике. Но дело-то в том, что в нем обнаруживается дилетант. П. Ферма окончил юридический факультет Тулузского университета. Сказалось, очевидно, влияние матери, происходившей из семьи, в которой было много юристов. Успешно занимался адвокатурой, затем перешел на должность советника одного из ведомств тулузского парламента. Там он прослужил всю остальную жизнь и умер два дня спустя после завершения судебного процесса в небольшом городке Кастре, куда выехал по делам службы. И вот этот скромный чиновник увлекся математикой. Правда, не одной ею. Он глубоко постиг классическую филологию, неплохо знал древних авторов и даже писал стихи, притом не только на родном, но и на испанском и латинском языках. Однако его самая горячая дилетантская привязанность — математика. Надо сказать, что довольно рано, уже в 28 лет, он получил здесь значительные результаты. Мог бы стать профессиональным математиком. Но не захотел; предпочел быть просто любителем. Более того, как ни увлекался П. Ферма математикой, ношу чиновника нес, по свидетельствам биографов, примерно, пользовался исключительным уважением коллег, выделяясь глубокой юридической образованностью. Так и прошел через жизнь, деля время между государственной службой и математическими досугами. Столь же непрофессионально вошел в математику великий Г. Лейбниц, влившись в нее, можно сказать, со стороны. Как и П. Ферма, он юрист. Кроме того, обучался философии. В этих дисциплинах был не только блестяще эрудирован, но и отличился как исследователь. Имел звания магистра философии и доктора права. Его докторская диссертация называлась «О запутанных казусах в праве». Сначала Г. Лейбниц испытал себя по дипломатическому ведомству, а с 30 лет и до конца жизни состоял на службе в должностях библиотекаря, историографа и политического советника по внешним делам у ганноверского герцога. Г. Лейбниц известен как крупный общественный деятель, просветитель. Это он основал Берлинскую академию наук и был ее первым президентом. Горячо содействовал основанию Российской академии, вообще ратовал за распространение научных знаний в России. Видимо, обсуждал эти вопросы с Петром I, которого не раз встречал во время заграничных поездок русского царя. Не потому ли Г. Лейбниц так близко к сердцу принимал дела российские, что происходил, по утверждению некоторых биографов ученого, из славян? Считают, что его предки — выходцы из соседних с Германией славянских земель и некогда носили славянскую фамилию Любеничи. По-настоящему Г. Лейбниц знакомится с математикой в возрасте 26 лет. По работам Р. Декарта, Б. Кавальери, Б. Паскаля изучает ее высшие разделы, притом в невероятно короткие сроки, во время пребывания в Париже с дипломатической миссией. Правда, то была вторая попытка подступиться к математике. Первая состоялась, когда ему исполнилось 17 лет. Но тогда он быстро охладел. На сей раз увлечение окагалось глубоким, и вот мы уже видим Г. Лейбнииа в числе ведущих математиков века. Конечно, его главный результат — дифференциальное исчисление. Об этом шла речь в предыдущей главе. Но не только оно прославило ученого. Им открыт известный ряд, названный в его честь «рядом Лейбница», проведено описание механизмов некоторых математических операций, что наряду с изобретением первой счетной машины, приписываемой также таланту Г. Лейбница, дает основание считать его предтечей «машинной математики». Ему же принадлежит заслуга введения двоичного кода записи чисел, понятий алгоритма, функции, координаты. Знаки дифференциала и интеграла, которыми пользуются ныне, тоже его изобретения. И тем не менее математика, как пишет Г. Лейбниц, была для него лишь приятным развлечением, которому ученый отдавался как любитель. «Я не имею точного понятия о центрах тяжести, — признается он. — Что касается алгебры Декарта, то она показалась мне слишком трудной». П. Ферма и Г. Лейбниц не исключение. Совсем не математиком начинал свою научную карьеру и знаменитый Л. Эйлер, долго работавший в России. По образованию филолог, он и готовился к этой профессии. Но увлекся математикой, где оставил, как известно, заметный след. Также филологом был крупный немецкий ученый XIX века Г. Грасман. Математикой он овладел самостоятельно, а заслуги его в этой области общепризнанны. Он провел первое систематическое исследование о многомерном эвклидовом пространстве, что способствовало развитию векторного и тензорного исчислений — разделов, без которых современная наука немыслима. А теперь обратимся еще к одной точной науке — физике. Поищем, нет ли похожих дилетантов и в этой области. Оказывается, и здесь выделяется немало крупных фигур, пришедших из гуманитарной сферы. Скажем, немецкий физик XVII века Отто фон Герике по образованию и роду первоначальной деятельности юрист. Так, может быть, он и остался бы юристом, если бы в одной из поездок в голландский город Лейден не увлекся математикой и физикой. Его любимое занятие — исследование воздуха. Это он выявил многие, дотоле неизвестные его свойства: упругость, способность поддерживать горение, постоянное наличие в нем воды, то, что воздух имеет вес, является проводником звука, и др. Но особенно прославился О. Герике тем, что показал существование атмосферного давления. К тому времени он был уже бургомистром, то есть главой родного ему города Магдебурга… Читатель, конечно же, вспомнил, ведь все мы прошли через магдебургские полушария и живо представляем выразительный рисунок на страницах школьного учебника физики: с десяток лошадей тщетно пытаются растащить две полусферы, из которых выкачан воздух. О. Герике принадлежит честь и ряда других открытий, например, электрического отталкивания и электрического свечения. Также из области юриспруденции происходили знаменитый итальянский физик XIX века А. Авогадро (автор названного его именем закона об идеальных газах), выдающийся голландский ученый XVII века X. Гюйгенс. Правда, X. Гюйгенс одновременно с изучением юридических наук в университетах Лейдена и Бреда уже тогда увлекался физикой. Далек был от физики в начале своего жизненного пути и Р. Бойль (XVII в.). До 27 лет он изучал религию и философию. Лишь поселившись в Оксфорде, пристрастился к экспериментальному и теоретическому естествознанию, проявив интерес к физике и химии Вместе с Э. Мариоттом им был открыт также хорошо известный нам еще со школьных лет закон соотношения объемов и давлений газов. Пожалуй, мы собрали достаточно (быть может, даже слишком достаточно?) фактов, подкрепляющих мысль о заметной роли гуманитариев в точной науке. Единственно, что еще хотелось бы сделать, — дополнить наш рассказ сведениями из современной науки, поскольку она также не «избавилась» от дилетантов. Вообще история повторяется. Как и ранее, в нашем столетии также обнаруживаем в числе крупных ученых области точного знания юристов, филологов, экономистов. Немного мы уже говорили об этом, рассказывая, например, о юристе Э. Хаббле, проявившем себя в астрономии, или о математике Ш. Рамануджане, бывшем клерке, имевшем весьма скудные экономические и правовые познания. Назовем и других. Один из лидеров в разработке квантовой теории, Л. де Бройль, имел гуманитарное образование. Он получил степень бакалавра, а позднее лиценциата литературы по разделу истории. Лиценциат — ученая степень в некоторых государствах Западной Европы, в частности во Франции. По значимости это средняя между бакалавром (низшая ступень) и доктором наук степень, которая дает право чтения лекций в высших учебных заведениях. Как видим, Л. де Бройль намерен был заниматься отнюдь не физикой, да еще ее спорными, едва обрисовавшимися проблемами. Но физикой занимался брат. Через него Л. де Бройль и познакомился с докладами, которые обсуждались на недавнем физическом конгрессе. То были сообщения о квантах. Увлекся настолько, что стал работать в лаборатории брата. Однако вскоре разразилась первая мировая война. Будущий ученый, отслужив 5 лет в армии, вернулся в 1919 году к мирной жизни и окончательно ушел в разработку теории квантовой механики. Чего ему удалось здесь достичь, мы уже знаем из предыдущего. Гуманитарное образование получил и знаменитык американский физик, ректор широкоизвестного Массачусетского технологического института Ч. Таунс. Он специализировался в области лингвистики, изучил и другие гуманитарные науки, а затем глубоко вник в проблемы физики. Область его исследований — квантовые генераторы. Это знаменитые лазеры, за разработку которых Ч. Таунс получил одновременно с советскими учеными Н. Басовым и А. Прохоровым Нобелевскую премию. Вместе с тем наблюдаются дилетанты «вертикального смещения» и в противоположном направлении. Есть факты «вмешательства» (правда, гораздо реже) естествоиспытателей в гуманитарные дисциплины. Рассмотрим развитую американцами Б. Уорфом и Э. Сепиром интересную, однако небезупречную теорию «лингвистической относительности». Б. Уорф окончил Массачусетский технологический институт и работал инженером по технике безопасности. Провозглашается положение «Язык навязывает нам видение мира». Окружающее воспринимается не таким, каково оно есть само по себе, а сквозь призму нашего языка. Скажем, на заборе висит объявление (сейчас вы почувствуете, что говорит инженер по технике безопасности). Оно гласит: «Курить воспрещается! Бензин!» Рядом бочка. Но хотя бочка давно пуста и курить вовсе неопасно, тем не менее, уверовав в запрет, оцениваем обстановку так, как если бы в бочке действительно находился бензин. То есть мы готовы видеть опасность там, где ее нет. И виноват в этом язык. Так во всем. На человека, пишет Б. Уорф, обрушивается поток восприятий внешней реальности, и мы членим его соответственно лингвистическим категориям. Европейские языки, например, имеют два больших класса слов: существительные и глаголы. Соответственно это вещи и процессы. Однако в некоторых языках, например у индейцев нутка, все слова соотносимы с нашими глаголами, то есть выражают действие. Скажем, понятие «волна» или «молния» у нас — существительные и обозначают вещи, а у нутка — глаголы. Они выражают движение и процессы. Сообразно этому люди нутка видят и окружающую действительность. Или же, развивает свою гипотезу Б. Уорф, есть языки, в которых отсутствует категория времени. Так, у индейцев хопи (США) нет временных понятий. В частности, они не говорят «пять дней». Хопи скажет: «Я был на охоте до шестого дня», или: «Я вернулся г охоты после пятого дня». Иначе сказать, в этом языке не используется выражение длительности. Вместо нее просто отмечают начало или конец чего-либо, не само временное протекание процесса, а его границы. Надо сказать, что в ряде пунктов излагаемая здесь теория себя оправдывает. Язык, безусловно, влияет на восприятие мира. Вот как сказывается, например, роль языка в формировании психологической установки, определяющей восприятие окружающею. Американский исследователь П. Уилсон осуществил такой эксперимент. В колледже из одной аудитории в другую ходил человек. Его сопровождал преподаватель и представлял: «Мистер Инглэнд». Но в каждой аудитории характеризовал его по-разному: как студента, лаборанта, доцента и, наконец, как профессора Инглэнда из Кембриджа. Заметьте, профессор, да еще из знаменитого университета, чья репутация держится очень высоко. Когда гость выходил из аудитории, студентов просили определить его рост. И тут обнаружилось интересное. По мере того, как Инглэнд увеличивался в глазах студентов в своем звании, то есть в своем значении, одновременно увеличивался и его рост. «Профессор Инглэнд» оказался выше «студента Инглэнда» примерно на 12,5 сантиметра. При этом рост преподавателя, который сопровождал его, в оценках студентов не менялся: во всех аудиториях он был определен примерно правильно. Аналогичные факты, а их немало, бесспорно, подкрепляют идеи Б. Уорфа. Однако с ним далеко не во сеем можно согласиться. Б. Уорф не учитывает, что язык прежде, чем влиять на наше восприятие мира, сам испытывает влияние последнего. Язык закрепляет знания о мире и уже потом участвует в формировании видения человеком окружающего. Это делает гипотезу Б. Уорфа и Э. Сепира особенно уязвимой. Отметим и другие примеры «вторжений» естествоиспытателей в гуманитарные сферы. Выдающийся французский социалист-утопист конца XVIII — начала XIX века Сен-Симон имел естественнонаучное образование. Теоретики русского народничества П. Лавров и М. Бакунин в прошлом артиллерийские офицеры. Закончив высшие военно-технические заведения, они проявили затем глубокий интерес к общественным процессам. Инженером горного дела был по образованию Г. Плеханов, оставивший ценные исследования социальных явлений. ЛЮДИ «БЕЗ ПРОШЛОГО» Предъявленные факты резких переходов социалистов гуманитарного профиля в естествознание, а из последнего в гуманитарное знание наиболее рельефно говорят о значении дилетантизма. Дилетантский взгляд подготавливает особые условия для восприятия действительности. Он вооружает исследователя той непредвзятой точкой зрения, которой столь недостает порой специалисту. В самом деле. Стряхнуть оковы старых парадигм тому, кто их освоил и разделяет, нелегко. Хорошо бы вообще не знать некоторых законов и методов, чем, владея ими, пытаться решать проблему, которая на основе старых знаний не решается и которая требует принципиально нового подхода. Поэтому исследователь, свободный от парадигм науки, лучше подготовлен к разработке оригинальной идеи, нежели специалист, беспрекословно разделяющий устоявшиеся воззрения. Смотрите, что пишет по этому поводу Г. Лейбниц: «Две вещи оказали мне услугу… во-первых, то, что я был самоучкой, а во-вторых, то, что в каждой науке, едва приступив к ней, часто не вполне понимая общеизвестное, я искал новое». Вместе с тем он предупреждает, что это обоюдоострое оружие, которое нельзя применять безоговорочно любому исследователю. И все же в этом есть своя правда. Особый успех празднуют, как мы видели, дилетанты-гуманитарии, перемещающиеся в совершенно чуждую им естественнонаучную область. Отчего бы это? Как будто у них нет преимуществ в сравнении с теми, кто кочует внутри естествознания или кто уходит из него в гуманитарные дисциплины. Оказывается, преимущества есть. Все дело в степени привязанности ученого к парадигмам века, в силе его преданности устоявшимся законам и методам. Влияние дисциплины на исследователя начинается рано, еще когда он только готовится как научный работник, то есть в студенчестве, затем в аспирантуре. Это влияние осуществляется просто. Действует четко отлаженная система вузовского обучения, которая производит отбор (экзамены, защита курсовых, дипломных работ и т. п.) именно по принципу безоговорочного — за редким исключением — принятия господствующих в научной дисциплине ценностей. С другой стороны, психологи выделяют два типа исследователей: так называемых «конвергентов» и «дивергентов». Конвергенты (от латинского «конвертере» — «сближаться», «сходиться») характеризуются готовностью"принять на веру, не задумываясь, любую предложенную систему положений науки. Притом они остаются глубоко убежденными, что возможны только эти положения и никакие другие. Дивергенты (также от латинского «дивергере» — «обнаруживать расхождение») способны к усвоению нескольких конкурирующих систем знания, сопровождая их восприятие критической оценкой. Самое любопытное в том, что, по данным некоторых психологов, конвергенты тяготеют к точным наукам, а дивергенты — к гуманитарным. Не потому ли представители гуманитарного знания и оказываются столь удачливыми в точной науке? Ибо по своим задаткам, складу характера да и, по-видимому, воспитанию, которое закладывается вместе с гуманитарным образованием, они скорее способны к созданию нового, чем их собратья из области строгой науки. Скорее потому, что это люди так сказать, «без прошлого», то есть они не связаны жесткой дисциплиной однозначных решений, которые несет точная наука. Напротив, их гуманитарная сфера, внушает разнообразие толкований одного и того же. Как обнаруживается, высокая точность, увы, не всегда подмога. Прислушаемся в связи с этим к одному замечанию известного советского физика Л. Мандельштама. Он пишет: «Если бы науку с самого начала развивали такие строгие и тонкие умы, какими обладают некоторые современные математики, которых я очень уважаю, то точность не позволила бы двигаться вперед». Характерно и замечание Гегеля, которое он в свое время обронил: «Математика наука точная, потому что она наука тощая». Конечно, не в столь категоричной дозе, но краешек истины здесь есть. Ранее мы отмечали явление конформизма, то есть стремления к единомыслию. Уместно оттенить, что консерватизмом как раз и страдают конвергенты. Видимо, не случайно М. Борн подчеркивал, что ученые-естествоиспытатели не должны быть «оторваны от гуманитарного образа мышления», которое помогает творчеству. Здесь вспоминается совершенно чуждый истинному состоянию дел спор относительно физиков и лириков. Как явствует, лирика нужна не только физику, но и физике. А высокомерное отношение, которое демонстрируют иные (мы боимся сказать: физики), похоже на то, как если бы о нашей культуре судил человек, воспитанный отнюдь не на лучших образцах искусства. Итак, мы обсудили и осудили специалистов, не умеющих преодолеть барьер профессиональной вооруженности, отдали должное дилетантам, проявившим тонкое понимание чужих проблем. Вместе с тем нам не хотелось бы, чтобы нас неправильно истолковали. Вопрос, конечно, не ставится так, что для достижения успеха исследователю надо забыть о своих специальных познаниях. Существо дела, как всегда, сложнее, чем оно кажется при внешнем осмотре. Если быть точным, то ученому следует пожелать лишь умения отвлекаться от знаний, определяющих его узкий профиль, умения, так сказать, расслабиться и проявить «недисциплинированность» в оценке исследовательской задачи. Иными словами, речь идет о том, чтобы взглянуть на свой предмет глазами стороннего наблюдателя. Здесь и оказывается полезной практика дилетанта. Следовательно, положение оборачивается так, чтобы специалист, не переставая быть специалистом, мог оказаться в своей области дилетантом. Скажем, так, как это имело место в следующем случае. На одном заводе под влиянием воздействий перекачиваемой жидкости постоянно разрушались трубопроводы из нержавеющей стали. Пригласили химика, специалиста по коррозии, и попросили его помочь. Он добросовестно замерил кислотные концентрации и возникающие напряжения, досконально изучил условия, в которых происходили губительные разрушения, и т. п. В результате явился научный труд, из которого явствовало, при каких режимах разрушается сталь, но о том, как уберечься от коррозии, ничего не говорилось. Другой же специалист, занявшись этой проблемой, сумел взглянуть на нее непрофессионально, отрешиться от шор узкоспециального подхода. Он просто-напросто достал громадный справочник по… пластмассам и отыскал в нем материал, не поддающийся разъеданию жидкостью. Завод построил трубопровод из этой пластмассы, и проблема была решена. Таким образом, исследователь не должен упускать возможности, которые открываются в случае неспециального подхода, он обязан наряду с использованием своего профессионального опыта поискать иные пути. Нам верится, что в такой постановке парадокс уже не выглядит столь грозным и непреодолимым. Противоречие «дилетант — специалист» удается этим смягчить, и вывод о решающей роли дилетантов в науке понять таким образом: речь идет не о восхвалении дилетантизма (так ведь можно далеко зайти), но о способности встать при решении своей задачи на чужие позиции и также о способности внести в решение чужих проблем свою позицию. Короче, нужно на время или в каком-то отношении попытаться стать дилетантом. А теперь рассмотрим эти выводы и рекомендации в их конкретных проявлениях. Чтобы взглянуть на проблему другими глазами, часто используют, хотя и не всегда осознанно, такой прием: пытаются представить знакомое незнакомым, а незнакомое, наоборот, знакомым. Необычно? Конечно. Зато это помогает отойти от проблемы на дистанцию: вдруг удастся обнаружить в ней новые грани. Дело в том, что творческий подход, как мы уже не однажды видели, характеризуется способностью исследователя поставить решаемую задачу независимо от той конкретной области знания, где эта задача бозникла, способностью отвлечься от специфического содержания проблемы и применить для поиска ответов методы других дисциплин. К сожалению, исследователи зачастую стремятся обойтись малыми силами и привлекают подходящие методы «на стороне», то есть попросту берут у соседей готовое решение, модифицируя его для своей проблемы. Однако, хотя такой прием имеет познавательную ценность, он недостаточно продуктивен, поскольку годится для решения только близких по типу задач. Гораздо плодотворнее «работает» то знание, которое привлечено из далеких, порой даже чуждых наук. Его применение кажется поначалу странным, парадоксальным, зато дает неоспоримый эффект. Мы расскажем о некоторых фактах из истории науки, поясняющих нашу мысль. Характерен, например, опыт изобретения швейной машины французом Э. Гау в 1845 году. Надо сказать, что такую машину намеревались создать давно, над ней бились еще в начале XVIII века. Причину неудач следует, по-видимому, искать в том, что шли путем простого переноса приемов ручной работы на механизм. Вот он, прием подобия! Пытались воспроизвести операции, которые совершает рука человека в процессе шитья. Э. Гау же подошел к задаче как дилетант. Он начисто «забыл», как вообще шьют. Изобретатель решил, что ручной шов не годится, и остановился на операциях, которые совершает… ткацкий челнок. Челнок к шитью? Это выглядело по меньшей мере чудачеством: ведь челнок не шьет. Однако Э. Гау удачно использовал действие возвратного движения, которое выполняется челноком. Так неожиданно нашла реализацию давно задуманная идея. Аналогично было осуществлено конструирование молотильной машины. И здесь изобретатели пытались вначале копировать ручную молотьбу. Например, прилаживали к вертящейся оси цепы наподобие крестьянской молотьбы цепами. Решение пришло совсем с другой стороны. Когда применили вращающийся барабан с зубцами, результат оказался поразительным. Неудивительно, что многие изобретатели и появились со стороны, ибо смогли взглянуть на проблемную ситуацию чужими глазами, были свободны от груза предвзятых методов, навязываемых специальными знаниями и методами. Немало плодотворных решений заимствовано у живой природы. Классический пример: висячие мосты Обычно мосты строили на опорах. Но вот понадобилось соорудить переход через глубокую впадину. Поставить опору было невозможно. Как же быть? Мучительно искал ответа инженер С. Браун. Как-то раз, лежа под деревом, он обратил внимание на паутину. Стоп! А почему бы не возвести мост по принципу перебрасывания паутины между деревьями? Тут же родился набросок еще небывалого в практике строения моста. Интересно, что паутина еще однажды послужила человеку. На этот раз уже в наши дни при возведении зданий. Обратили внимание на то, что при сильном ветре, который сметает на своем пути тяжелые предметы, ломает вегви деревьев, паутина остается невредимой. Этим заинтересовались советские специалисты и решили по образцам такого «чуда» построить крышу здания. Конструкция оказалась не только прочной, но и дешевой, что позволило сэкономить около пятой части материалов. По «патентам» природы была создана Н. Брюннелем машина для рытья туннелей. Она воспроизводила движения корабельного древоточца. Это небольшой червь, покрытый твердой цилиндрической пластинкой. Впрочем, черви тоже не один раз оказали услугу изобретателям. Наблюдения за тем, как они прокладывают ходы в дереве, помогли решить проблему одной подводной конструкции. Дело в том, что червь по мере продвижения создает для себя трубку. Это и подсказало идею кессона: так называют открытый снизу ящик для образования под водой свободного от нее пространства. Кессон позволяет сооружать подводные основания для мостов, плотин и т. п. Родилась специальная наука — бионика. С ее помощью стремятся выведать у природы, чтобы воплотить в технике, и многие другие тайны: высокие скорости передвижения дельфинов, способность рыб и птиц ориентироваться в пространстве, кита — справляться со злокачественными опухолями (последние обволакиваются капсулой, препятствующей их контакту с окружающими клетками) и др. Будем помнить, однако, что и здесь нас может подстерегать опасность узкой специализации. Прямые заимствования у природы не всегда идут впрок. Не имело успеха, например, конструирование летательных аппаратов с машущими крыльями, устройств, передвигающихся на ходулях, механических ногах и прочее. Решения были получены как раз на пути отказа от прямых подражаний. В частности, при создании механизмов передвижения использовали колесо, не имеющее прямого аналога в живой природе. Вообще говоря, такие плодотворные подсказки могут приходить со всех сторон. Мы коснулись области изобретательства. Если взять научное творчество в целом, то здесь поле приложения «посторонним» идеям, по существу, безгранично, а сам характер таких приложений порой весьма причудлив; скажем, влияния, идущие из сферы литературы, искусства, философии. Здесь не время подробно развивать эту тему. Отметим лишь два факта. Стало достоянием широкой известности одно замечание А. Эйнштейна. Он признался однажды, что на него производил сильнейшее впечатление русский писатель Ф. Достоевский, который дал ему как исследователю больше, чем многие естествоиспытатели и математики, больше, чем, например, даже К. Гаусс. Можно догадываться, что Ф. Достоевский оказал воздействие именно необычной манерой, с какой он распоряжался судьбами своих героев. Художник наделял их столь своеобразным характером и образом мысли, ставил в такие ситуации, что все казалось нелепым с точки зрения «нормального» романа и здравого смысла. Это ведь не математик, а писатель Ф. Достоевский еще в 70-х годах прошлого столетия выразил недовольство по поводу маленького эвклидова ума, связанного лишь с тремя измерениями. Не таким ли своеобразным и непокорным с точки зрения господствующей науки характером отличались и воззрения самого А. Эйнштейна? Немало нужных идей пришло в естествознание и от философии. В предыдущей главе нам уже удалось, надеемся не в последний раз в этой книге, сказать о ее роли. «АКАДЕМИКОВ ДОСТОИНСТВО ГЛАВНОЕ» Но если на результатах поиска могут сказаться влияния, идущие от самых различных областей знания, то, очевидно, исследователю полезно овладеть возможно более широким кругом достижений науки и культуры. Не случайно выявляется следующее обстоятельство. История науки показывает, что чем крупнее ученый, тем более разнообразны его интересы. Порой приходится лишь удивляться размаху его занятий и профессий. Такими, по выражению Ф. Энгельса, «титанами мысли» по многогранности и учености были Н. Коперник и Л. да Винчи в период становления науки, Г. Лейбниц, И. Кеплер, X. Гюйгенс — в пору ее возмужания, А. Эйнштейн, М. Борн, С. Вавилов — в наше время. Многогранностью научных запросов отличались многие русские ученые. Особенно выделяется М. Ломоносов. Прежде всего он прославил себя как физик и химик. Широко известны его исследования по электричеству, труды в области физической химии, одним из основателей которой он является. Как уже отмечалось, М. Ломоносов — один из «виновников» установления закона сохранения и превращения вещества и энергии. Геологи знают его как автора работы «О слоях Земли», интересной работы и не единственной, вышедшей из-под пера великого ученого. Металлурги узнают в нем коллегу, написавшего «Первые основания металлургии» — книгу, которая была действительно первой во времени да и по значимости тоже. В географии за ним числятся «Краткие описания разных путешествий по северным морям и показание возможного проходу Сибирским океаном в Восточную Индию». Обратите внимание, насколько он, предсказав Северный морской путь, шел впереди эпохи в своих «Кратких описаниях» отнюдь не с кратким названием. Выдающиеся результаты получены им в области оптики, а также астрономии. Достаточно назвать хотя бы одно — открытие атмосферы Венеры. Вместе с тем гений М. Ломоносова был дружен с историей и филологией. Ему принадлежит ряд исторических изысканий, в числе которых фундаментальные: «Древняя Российская история от начала российского народа до кончины великого князя Ярослава Первого или до 1054 года», «Краткой российской летописец с родословной», «Описание стрелецких бунтов и правления Софьи». Стоит заметить, что последнее сочинение широко привлекалось Ф. Вольтером, когда он работал над монографией по истории России. Что касается филологии, то им написаны «Российская грамматика», руководства к риторике (приемам ораторского искусства) и красноречию, другие труды. А главное, он предпринял заметные усилия в создании национального литературного языка. Наконец, не забудем, что М. Ломоносов историк, поэт и художник. Весьма показательно недоразумение, постигшее составителей одного европейского справочника о крупных ученых. После характеристики М. Ломоносова как выдающегося химика XVIII века шло предупреждение, что его не следует путать со знаменитым русским поэтом того же времени Михаилом Ломоносовым. Мы видим, таланты М. Ломоносова многосторонни. А. Пушкин, отмечая его заслуги в открытии первого университета в России, заметил: скорее всего надо сказать, что он был сам первым ее университетом. Видимо, М. Ломоносов специально развивал многообразие интересов, поскольку считал это условием научного успеха. Вот что писал он по этому поводу: «Членов академического собрания, особливо ординарных академиков достоинство главное состоит в довольном значении своей науки». Но, дополняет он, нужно, «чтобы такой член не совсем чужд был и неискусен в других сродных с его профессией науках». Широта увлечений характерна и для Д. Менделеева. Кроме химии, в которой, кстати, он тоже проявил разносторонность, ученый обращался ко многим другим наукам. Например, изучал нефтяное дело. С этой целью трижды предпринимает поездки на Кавказ, затем в Америку, глубоко вникая в технологические процессы добычи нефти от момента ее извлечения из земли до получения конечного продукта. Как видно, знакомство оказалось плодотворным. Он изобрел нефтепровод и нефтеналивные суда, масляные кубы для перегонки нефти, предсказал появление бензинового мотора. Позднее Д. Менделеев увлекся каменноугольной промышленностью и металлургией, еще позднее работает консультантом морского министерства, где изобрел бездымный порох, а также руководит Главной палатой мер и весов. Здесь проводит перестройку всей русской метрологии — науки об измерениях. Еще одна его страсть — воздухоплавание Во время полного солнечного затмения предпринимает — сначала вместе с аэронавтом, а потом один — полет на воздушном шаре. Окончилось дело тем, что аэростат занесло в одно удаленное село, жители которого немало подивились, обнаружив в кабине профессора Петербургского университета. Д. Менделеев пояснил зто так. О профессорах везде думают, будто они горазды только говорить да выдавать советы. Сами же практическими делами владеть не способны. Вот он и решил опровергнуть такое мнение… Вместе с тем выдающийся естествоиспытатель века выступил с рядом глубоких идей в области экономики, политики, в вопросах управления. Но в условиях царской России его предложения, проекты, записки так и остались проектами. Всего же им написано около четырехсот работ по самым разным направлениям знания. Расскажем еще об одном русском ученом XIX-XX веков — об А. Любищеве. Он был довольно узким специалистом-энтомологом. Напомним, энтомология — раздел зоологии, изучающий насекомых. Однако А. Любищев интересовался многими другими науками. И не любопытства ради. Оставил серьезные исследования по медицине, литературе, политике. Специалистам по истории известен, например, его трактат об Иване Грозном. А некоторые историки присылали даже ему на отзыв свои работы. Считали, что у А. Любищева свой взгляд, своя трактовка, своя точка отсчета. Занимался он и математикой и физикой. Иные полагали, что ученый разбрасывался. Писатель Д. Гранин, выпустивший о нем книгу, замечает следующее. Многие великие не ограничивали себя каким-то либо одним занятием, часто уходили в сторону, пооой даже вовсе и не в научную. К примеру, И. Ньютон отдал дань богословию И. Кеплер — астрологии. Композитор Р. Вагнер ценил написанные им стихи выше, чем свои музыкальные сочинения. «Но что, — замечает Д. Гранин, — если он был прав и стихи помогали ему писать музыку? Вообще, что было главным, а что лишнее? Кому судить об этом? И что, если отвлечения помогали Любищеву?» А теперь наше повествование подошло совсем к заботам современной науки. Тенденции лавинообразного накопления научной информации еще более заострили вопрос о специализации. Похоже, что ныне ученому и свою-то область узнавать как следует некогда, не то чтобы заглядывать в чужую. И тем не менее идея оснащенности широким кругом знаний и умений владеет умами исследователей. Она, может быть, даже стала еще актуальнее, если учесть, что современная наука развивается преимущественно в смежных точках. Недаром говорят: там, где недавно были границы науки, теперь находятся ее центры. Чтобы шагать вровень с эпохой, чтобы уйти от опасности «профессионального кретинизма», ученый должен выходить за пределы своей дисциплины во внешнее пространство. И не стоит бояться упрека в дилетантизме. Встречаются разные формы приобщения к «чужой» науке. Скажем, «ненаправленное» шение То есть чтение всех журналов подряд — вдруг встретится интересное решение. А встретиться оно может в совершенно неожиданных местах. Плодотворно также общение с исследователями далеких по профилю направлений. Приносит пользу и объединение в один коллектив разных специалистов и т. д. На этом мы не будем останавливаться. Нас интересует сейчас другое. Испытанным способом преодоления узости профессионализма является смена рода занятий Это практиковали уже Г. Гельмгольц, Л. Пастер, А. Лавуазье. А вот как работал Ж. Кювье. Он увлекался разными отраслями знания. Имея несколько кабинетов, располагал в каждом из них рукопись по какому-либо особому вопросу и материалы по нему. Входя в кабинет, тут же переключался на нужный предмет и занимался, если появлялось хотя бы несколько минут. Немецкий философ XVIII века И. Кант считал интеллектуальную перевоплощаемость чертой философского гения. Известно, что сам он оставил труды в разнообразных областях знания: по антропологии, теории государства, эстетике. Вместе с П. Лапласом высказал идею о происхождении солнечной системы из туманности, развивая так называемую «небулярную теорию». Она вошла в науку как гипотеза Канта — Лапласа. Но обратимся к нашему времени. Несмотря на давление со стороны процесса дифференциации знания (а может быть, как раз в силу этого давления), ученые полагают полезным время от времени менять специальность. В частности, Э. Ферми считает, что это нужно делать каждые 10 лет. Наступает момент, говорит он, когда исследователь исчерпывает себя. Поэтому лучше уступить поле молодым, а самому уйти в новую область, где ваши идеи могут оказаться плодотворными. Э. Ферми и сам следовал этому правилу. Вначале работал в области приложений квантовой механики, после переезда в США в 1938 году (год получения Нобелевской премии) занялся атомной энергетикой и ядерным оружием, создавал атомную бомбу. После 1945 года оставил эту область и перешел к физике элементарных частиц. Так же и П. Капица считает, что исследователю, как правило, нужно менять область приложения сил. «Я сам сейчас работаю, — добавляет он, — на плазме, до этого занимался низкими температурами, а начинал с магнетизма». Аналогичные мысли высказывает и другой советский ученый, академик Л. Фаддеев. «Я, — говорит он, — учу своих учеников: когда чувствуешь, что можешь легко работать по данной теме, оставь ее». Ныне популярны идеи так называемой «интеллектуальной мобильности»: умение переходить в решении задач от одних методов к другим, нетипичным. С этим связана и интенсивная смена специальностей. Дирекции ряда зарубежных исследовательских фирм считают, например, полезным, чтобы молодые ученые овладевали несколькими профессиями. Как показали социологические исследования, среди советских научных работников из каждых трех только один сохраняет верность обретенной в вузе специальности, а двое меняют ее, хотя и необязательно радикально. Конечно, в каждой науке своя обстановка. Есть науки, сильно подверженные разъеданию. Их называют «науки — проходные дворы». В них не задерживаются. Это дисциплины, которые испытывают особенно бурные нашествия со стороны других наук и под влиянием последних быстро дифференцируются. Например, биология — под давлением физики и химии, лингвистика — под воздействием математики и логики. Имеются отрасли знания, которые, наоборот, притягивают. Это «науки-ловушки». Здесь отмечаются новые, рождающиеся на перекрестке дисциплин, так сказать, «модные» направления: бионика, биокибернетика, математическая лингвистика. Третья группа наук взяла на себя труд питать остальные, выращивая кадры фундаментального назначения. Их называют «науки-доноры». Например, математика — по отношению к ее прикладным разделам, или химия — по отношению к химико-технологическим циклам. Наблюдается и ослабленная форма интеллектуальных смещений — «маятниковая мобильность». Она характеризуется обращением к результатам «чужих» наук и не сопровождается «изменой» специальности. Просто ощущается любопытство к информации, добытой соседом. Исследования показали, что отмеченные явления имеют под собой достаточно глубокие основания. Американские науковеды Д. Пельц и Ф. Эндрюс, обобщая солидную массу данных, заключают, что автономные ученые и инженеры работают успешно, когда их интересы широки и разносторонни, и менее успешно, если они специализированы в узком профиле. Другое свидетельство. Согласно закону, выведенному современными науковедами, деловая активность интенсивно растет в возрасте 20-35 лет, а затем идет нл убыль. При этом у одной части специалистов активность исчерпывается быстро (примерно к 40 годам), у других же — более медленно, наступая лишь к 60 годам. Оказалось, что членам первой группы характерна одна черта: все получили узкую специализацию и не меняли ее. То есть они сразу же, так сказать, вошли в форму, но и застыли в ней. Люди же долгоактивной группы, хотя тоже получили узкую специальность, однако работали сначала не по ней. Психологи объясняют это тем, что первые не научились переучиваться в молодости. Потому они и не смогли поддерживать активность обращением к новым темам, когда старые были изучены или, утратив актуальность, отошли в прошлое. Зато вторые, в силу ломки профитя, научились в свое время выходить в чужие сферы, осваивать непривычные методы и решения. Такие переключения поддерживают творческое горение, вызывая прилив свежих сил, удлиняя «пик» активности. За разносторонность, необходимость преодоления узкопрофессионального подхода при решении научных задач «голосует» и физиология. Чем многограннее интересы исследователя, тем все более обширные области мозга вовлекаются в работу, а это развивает еще большую активность. В заключение главы, пожалуй, стоит еще раз дать объяснение. Mы настаивали, что обилие знаний нередко ложится бременем на творческое воображение ученого, более того, бросили немало обвинительных слов и оборотов на головы специалистов. Вместе с тем отстаивалась мысль о необходимости широкой образованности и, если угодно, эрудированности ученого. Здесь нет противоречия. Дело в том, что творчеству мешает не эрудиция вообще, а узкая эрудиция, которая замыкает мысль ученого на знаниях лишь его собственной специальности. Между тем выход в смежные и отдаленные области науки, как мы видим, стимулирует поиск. Именно такая, не скованная рамками однойединственной дисциплины, осведомленность и полезна Одним словом, положение не должно оборачиваться противопоставлением: либо имеем специалиста, знающего все ни о чем, либо дилетанта, который знает «ничего» обо всем. И тут вновь способна помочь философия. По образ ному выражению известного норвежского ученого и путешественника Т. Хейердала, нынешние специалисты как бы сидят в глубоких колодцах. Каждый видит только то, что добывает сам. Но он не знает, что нашли и выбросили на поверхность другие специалисты. Одна ш функций философа в том и состоит, чтобы, стоя наверху, знакомить ученых с плодами их соседей и обобщать до бытые результаты. Однако дело здесь не ограничивается лишь знакомством с тем, что достигнуто смежными дисциплинами Важно суметь это знание применить у себя. Речь заходит таким образом о заимствовании не просто знаний но также и методов их применения в своей области не следования. Метод и определяется как умение исполь зовать однажды добытую информацию для приращения новой информации. Образно говоря, это оставленная в уме дорожка, по которой исследователь некогда прошел и которой он может воспользоваться вновь, раз уж он ее проложил. Но кто же нас должен научить превращать знания в алгоритмы извлечения новой информации, как не философия? Ибо наука о методе — методология — появилась в лоне философии и составляет ее существенную часть. Методология описывает общие пути и условия познания, формируя, так сказать, стратегию научного поиска; она разрабатывает средства, инструментарий познавательных процедур, учит всему тому, что пригодится мышлению в этом многотрудном деле постижения истины. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх |
||||
|