|
||||
|
Глава IIIРождение современной биологии Новая анатомияГод 1543-й… Этот год обычно связывают с началом так называемой научной революции. Именно в 1543 г. польский астроном Николай Коперник (1473–1543) опубликовал книгу «Об обращениях небесных сфер», в которой впервые излагалось новое представление о солнечной системе (так называемая гелиоцентрическая система мира). Коперник утверждал, что Солнце является центром, а Земля — планетой, которая движется по орбите вокруг Солнца, как и любая другая планета. Эта гипотеза послужила началом конца античных представлений о Вселенной, о неподвижной Земле в центре солнечной системы. Однако понадобилось почти сто лет ожесточенной борьбы, чтобы новая точка зрения восторжествовала. В 1543 г. появилась еще одна книга, столь же революционная по своему значению для биологии, как и книга Коперника для физики. Она называлась «О строении человеческого тела»; ее автором был крупнейший анатом эпохи Возрождения Андреас Везалий (1514–1564). Везалий получил образование в Нидерландах, в строгих традициях школы Галена, к которому всегда питал чувство глубокого уважения. Закончив обучение, он отправился в Италию, где научная атмосфера была более свободна от предрассудков. Там Везалий возродил традиции Мондино де Люцци и собственноручно анатомировал трупы. В тех случаях, когда при вскрытии он обнаруживал расхождения с описаниями древнегреческих ученых, Везалий осмеливался выступать с критикой древних. Книга, которая явилась плодом его наблюдений, была первой наиболее точной работой по анатомии человека. По сравнению с более ранними трудами у нее было два существенных преимущества: во-первых, ее выход совпал с расцветом книгопечатания и она очень быстро разошлась по всей Европе; во-вторых, она была снабжена великолепными иллюстрациями — многие из них делал ученик Тициана. Человеческое тело изображалось в естественных положениях; особенно удачными были рисунки мышц. Жизнь Везалия после опубликования книги сложилась крайне несчастливо. Его взгляды были признаны еретическими, анатомирование, за которое он так ратовал, продолжало оставаться незаконным актом. Везалий вынужден был предпринять паломничество в Палестину и на обратном пути стал жертвой кораблекрушения. Следует признать, что революционное воздействие гипотез Везалия в биологии было более эффективным, нежели переворот, совершенный Коперником в астрономии. Утверждения Везалия не казались столь маловероятными, по крайней мере на первый взгляд, как движение огромной Земли в пространстве. Ученый в спокойной, обстоятельной манере описывал формы и расположение органов человеческого тела; каждый при желании мог удостовериться в его правоте. Греческую анатомию предали забвению. Новая итальянская анатомия вступила в период расцвета. Габриель Фаллопий (1523–1562), один из учеников Везалия, изучал органы размножения. Ему принадлежит описание труб, идущих от яичников к матке, которые до сих пор известны в медицине под названием фаллопиевых труб. Другой итальянский анатом, Бартоломео Эустахио (1510–1574.), будучи на словах противником Везалия и сторонником Галена, на практике изучал человеческое тело и предпочитал описывать только то, что видел собственными глазами. Он заново, впервые после Алкмеона, открыл трубу, соединяющую ухо с горлом, которая известна ныне под названием евстахиевой трубы. Новые веяния в анатомии распространились и на другие области биологии. Как мы помним, Гиппократ был сторонником гуманного метода лечения; увы, в более поздние времена врачи пользовались, в сущности, варварскими методами. Лечение велось из рук вон плохо: так, например, хирургические операции делал не врач, а цирюльник, который, следовательно, не только занимался своим непосредственным делом — стриг и брил, — но и резал человеческое тело. Цирюльники-хирурги были малосведущи в теории; возможно, именно поэтому они охотно прибегали к решительным мерам: дезинфицировали огнестрельные раны кипящим маслом, останавливали сосудистое кровотечение, прижигая края раны раскаленным докрасна железом, и т. д. Французский хирург Амбруаз Паре (1517–1590) немало потрудился, пытаясь изменить подобные варварские методы лечения. Он начал свою карьеру учеником цирюльника, позже служил в армии в качестве цирюльника-хирурга. Именно там он ввел в лечение поразительные новшества: накладывал мази на огнестрельные раны (при комнатной температуре) и, перевязывая артерии, останавливал кровотечение. Причиняя больному несравненно меньшие боли, чем другие хирурги, он чаще своих собратьев добивался успеха. Не удивительно, что именно его иногда называют отцом современной хирургии. Кроме того, Паре принадлежит идея создания хитроумных протезов конечностей; он усовершенствовал родовспомогательные приемы и перевел на французский язык краткое изложение трудов Везалия, с тем чтобы цирюльники, не знающие латыни, могли почерпнуть кое-какие сведения о строении человеческого тела, прежде чем кромсать его наугад. Вскоре врачи вслед за учеными-анатомами, не гнушавшимися собственноручно анатомировать трупы, позабыв об академической важности, снизошли до самостоятельных хирургических операций. КровообращениеВыяснение строения и расположения органов тела является основной задачей анатомии. Гораздо труднее изучать их нормальное функционирование — эти вопросы составляют предмет физиологии. Греки были плохими физиологами; их представления о функционировании сердца в большинстве своем ошибочны. Что сердце — это насос, который перекачивает кровь, не вызывало сомнения. Но откуда поступает кровь и куда она исчезает? Основной ошибкой древнегреческих медиков было то, что они считали вены единственными кровеносными сосудами. Артерии, обычно пустые у трупов, рассматривались ими как воздушные сосуды. (Слово «артерия» в переводе с греческого — «воздушный тракт».) Правда, Герофил показал, что кровь переносят как вены, так и артерии. По его мнению, оба вида кровеносных сосудов соединяются с сердцем, и вопрос решился бы очень просто, если бы на периферии, в местах, удаленных от сердца, удалось обнаружить связь между венами и артериями. Тщательные анатомические исследования позволили установить, что вены и артерии разветвляются на более мелкие сосуды, которые в конце концов становятся настолько тонкими, что их невозможно разглядеть. Никакой связи между ними обнаружить не удалось. На этом основании Гален предположил, что кровь движется от одного типа сосудов к другому, переходя из правой половины сердца в левую. Чтобы кровь могла проходить через сердце, утверждал он, в толстой мускульной перегородке, которая делит сердце на правую и левую части, должны быть мельчайшие дырочки. Правда, их никому не удалось разглядеть, но на протяжении семнадцати веков врачи и анатомы вслед за Галеном допускали их существование. Итальянские анатомы XVI–XVII веков, еще не осмеливаясь выступать открыто, стали подозревать, что дело обстоит не совсем так. Джероламо Фабриций д'Аквапенденте (1537–1619) обнаружил венозные клапаны и показал, как они действуют: беспрепятственно пропускают кровь по направлению к сердцу и задерживают ее при обратном движении. Казалось, проще всего сделать вывод, что кровь движется по венам только в одном направлении — к сердцу. Однако такой вывод противоречил бы мнению Галена о двустороннем ее движении, поэтому Фабриций лишь осмелился предположить, что клапаны замедляют, а отнюдь не приостанавливают обратный ток крови. У Фабриция был ученик, английский студент Уильям Гарвей (1578–1657), человек с весьма решительным характером. Вернувшись в Англию, Гарвей занялся изучением сердца и обратил внимание (как и некоторые анатомы до него) на существование в сердце односторонне действующих клапанов. Следовательно, заключил он, кровь притекает в сердце извне и клапаны не дают ей вернуться обратно в вены. Соответственно кровь вытекает из сердца по артериям, но не может вернуться в сердце через односторонне действующие клапаны. Когда Гарвей перевязывал артерию, кровью переполнялась ближняя к сердцу часть; когда он перевязывал вену, раздувалась удаленная от сердца часть. Все это показывало, что кровь не приливает и не отливает, а постоянно движется в одном направлении. Она течет по венам в сердце и затем поступает в артерии, а не наоборот. Гарвей вычислил, что за один только час сердце перекачивает количество крови, втрое превышающее вес человека. Казалось невероятным, чтобы кровь могла с такой скоростью образовываться и распадаться. Ясно, что где-то за пределами сердца кровь из артерий должна возвращаться в вены через невидимые глазу соединительные сосуды. Предположив существование таких соединительных сосудов, не составляло труда понять, что сердце многократно перекачивает одно и то же количество крови: вены — сердце — артерии — вены — сердце — артерии — вены — сердце — артерии и т. д. В 1628 г. вышла книга Гарвея «Анатомическое исследование о движении сердца и крови у животных», в которой он опубликовал результаты своих наблюдений. Несмотря на небольшие размеры (всего 72 страницы) и скромный внешний вид, книга была под стать своей бурной эпохе — она вызвала полный переворот в истории биологии. Именно в это время великий итальянский ученый Галилео Галилей (1564–1642) ратовал за внедрение экспериментального метода в науке, тем самым полностью опровергая точку зрения Аристотеля. Исследование Гарвея было первым серьезным проявлением нового подхода к биологии. Гарвей опроверг учение Галена и заложил основы современной физиологии. (Отметим, что гарвеевское вычисление количества крови, проходящей через сердце, было первой серьезной попыткой применения математики в биологии.) Само собой разумеется, что врачи — приверженцы старой школы яростно ополчились на Гарвея, но против фактов оказались бессильны. К тому времени, когда Гарвей состарился, его идея кровообращения получила всеобщее признание среди биологов, несмотря на то что сосуды, соединяющие артерии и вены, еще не были открыты. Так европейские ученые окончательно и бесповоротно перешагнули границы античной биологии. Теория Гарвея положила начало борьбе между двумя антагонистическими концепциями по вопросу природы живого, борьбе, которая идет на протяжении всей истории современной биологии и продолжается до сих пор. Как утверждают сторонники одной теории, живое существенно отличается от неживого, поэтому, изучая только неживые объекты, нельзя познать жизнь. Значит, имеется два вида законов природы: один для живой материи, другой — для неживой. Эта теория получила название виталистической. С другой стороны, можно рассматривать жизнь как высокоспециализированную форму материи, которая, однако, существенно не отличается от менее сложно организованных систем неживой природы. Тщательное изучение неживой природы позволит лучше понять живой организм, который, по мнению приверженцев этой точки зрения, является лишь невероятно усложненной машиной. Подобного рода теория характеризует механистический материализм. Открытие Гарвея, несомненно, послужило доводом в пользу механистического материализма. В самом деле, можно считать, что сердце — это насос, а движение крови подчиняется физическим законам движения жидкости. Если это так, то где же предел? Можно ли полагать, что все остальное в живом организме представляет собой всего-навсего набор сложных и взаимосвязанных механических систем? Представление об организме как о механическом устройстве разделял крупнейший французский философ того времени Рене Декарт (1596–1650). Но такая точка зрения резко противоречила общепризнанным теориям, и Декарт предусмотрительно подчеркивал, что под «механизмом» он подразумевает тело человека, а не его разум и душу. Разум и душу он рассматривал с точки зрения витализма. Декарт предположил, что взаимосвязь между телом человека и его разумной душой осуществляется через придаток мозга — шишковидную железу, так как ошибочно считал, что шишковидная железа имеется только у человека. Вскоре, однако, выяснилось, что у некоторых примитивных рептилий эта железа развита еще лучше, чем у человека. Теории Декарта оказали огромное влияние на дальнейшее развитие биологии. У него нашлось немало последователей среди физиологов, которые пытались развивать механико-материалистические взгляды. Так, итальянский физиолог Джованни Альфонсо Борелли (1608–1679) в книге, опубликованной в год его смерти, рассматривал мышцы и кости как систему рычагов. В данном случае такая точка зрения не расходится с истиной, ибо законы действия деревянных рычагов вполне применимы к рычагам из костей и мускулов. Борелли пытался применить принципы механики и к другим органам, например к легким и желудку, однако не столь успешно. Начала биохимииРазумеется, тело можно считать механизмом, и не прибегая к аналогиям с рычагами и приводами, а происходящие в организме процессы можно объяснить не только физическим, но и химическим взаимодействием. Первые химические эксперименты на живых организмах провел голландский естествоиспытатель Иоганн Баптист Ван-Гельмонт (1577–1644), современник Гарвея. Ван-Гельмонт выращивал иву в сосуде с определенным количеством почвы. Через пять лет, на протяжении которых он регулярно поливал иву только водой, вес дерева увеличился на 73 килограмма, а земля потеряла только 57 граммов. Исходя из этого, Ван-Гельмонт пришел к выводу, что дерево черпает нужные ему вещества не из почвы (совершенно верно), а из воды (неверно, по крайней мере частично). Его ошибка заключалась в том, что он не принял в расчет воздуха, — злая ирония судьбы, ибо именно Ван-Гельмонт первым стал изучать газообразные вещества. Это ему принадлежит слово «газ», он открыл так называемый «лесной дух», который впоследствии оказался не чем иным, как углекислым газом — основным источником жизни растений. Работы Ван-Гельмонта в области химии живых организмов (или, как мы ее теперь называем, биохимии) получили дальнейшее развитие в трудах других исследователей. Одним из первых энтузиастов биохимии был Франциск де ла Боэ (1614–1672), известный под латинизированным именем Сильвия. Представление об организме как о химическом аппарате он довел до крайности; так, по его словам, пищеварение — чисто химический процесс, действие которого сходно с химическими изменениями, происходящими во время брожения (в этом он оказался прав). Далее он предположил, что правильное функционирование организма зависит от баланса химических компонентов тела; болезнь — это результат либо избыточного, либо недостаточного содержания в организме кислоты. Это утверждение Сильвия в какой-то мере справедливо. Однако наука в его время была еще на таком низком уровне, что дальше этих предположений он пойти не смог. Появление микроскопаНаиболее уязвимым местом в теории кровообращения Гарвея было то обстоятельство, что ему так и не удалось обнаружить связи между артериями и венами. Он лишь предположил, что подобное соединение существует, но вследствие малых размеров соединяющих сосудов не видно глазу. К концу жизни Гарвея вопрос все еще оставался нерешенным, и так могло бы продолжаться вечно, если бы человечество полагалось только на невооруженный глаз. Еще в древности люди знали, что кривые зеркала и стеклянные шары, наполненные водой, обладают свойствами увеличивать предметы. В попытках добиться наибольшего увеличения исследователи уже в начале XVII в. обратились к линзам. Их вдохновляли удачные исследования, проводимые при помощи телескопа, оптического инструмента, впервые примененного Галилеем для астрономических наблюдений еще в 1609 г. Постепенно увеличительные приборы, или микроскопы (в переводе с греческого «видеть малое»), вошли в употребление, и биология необычайно расширила область своих наблюдений. Микроскоп позволил натуралистам детально описывать мелкие живые существа, а анатомам — обнаруживать невидимые глазу структуры. Выдающимся анатомом-микроскопистом был голландский натуралист Ян Сваммердам (1637–1680). Особую известность получили его анатомические исследования насекомых, выполненные с превосходными детальными зарисовками. Сваммердаму принадлежит открытие взвешенных в крови мельчайших клеток, которые придают ей красный цвет. (Теперь они известны под названием эритроцитов, или красных кровяных телец.) Английский ботаник Неемия Грю (1641–1712) изучал под микроскопом строение растений; особенно его интересовали органы размножения. Ему удалось описать строение отдельных зерен пыльцы. Голландский анатом Ренье Грааф (1641–1673) проводил аналогичные исследования на животных. Он изучал тонкое строение семенников и яичников и, в частности, дал описание пузырьковидных образований в яичнике, которые до сих пор называются граафовыми пузырьками (фолликулами). Но самым выдающимся было открытие итальянского физиолога Марчелло Мальпиги (1628–1694). Исследуя легкие лягушки, он обнаружил сложную сеть мельчайших кровеносных сосудов. Проследив слияние мелких сосудов в более крупные, Мальпиги установил, что последние оказывались в одном случае венами, а в другом — артериями. Оправдалось предположение Гарвея: артерии и вены действительно соединены сетью сосудов, настолько мелких, что их невозможно увидеть невооруженным глазом. Эти микроскопические сосуды получили название капилляров (от латинского capillaris — волосной, хотя в действительности они гораздо тоньше волоса). Это открытие, окончательно утвердившее теорию кровообращения Гарвея, было сделано в 1661 г., через четыре года после смерти великого английского ученого. Однако прославил микроскопию не Мальпиги, а голландский купец Антони Левенгук (1632–1723), для которого микроскоп был всего лишь любимым развлечением. Ранние микроскописты, в том числе и Мальпиги, пользовались системой линз, которые, как они справедливо полагали, должны были давать большее увеличение, нежели одна линза. Однако их линзы были еще несовершенными, с неровными поверхностями и внутренними трещинами. При попытке получить большее увеличение детали становились расплывчатыми. Левенгук пользовался простыми линзами очень малых размеров. Изготавливались они из безупречного стекла. Он скрупулезно шлифовал стекла, до тех пор пока не добился четкого увеличения до 200 раз. В некоторых случаях размер линз не превышал булавочной головки, тем не менее они великолепно служили целям любознательного голландца. С помощью линз Левенгук наблюдал все, что попадало ему под руку. Он без труда следил за движением крови в капиллярах головастика и смог описать красные кровяные тельца и капилляры гораздо подробнее и точнее, чем их первооткрыватели Сваммердам и Мальпиги. Один из его помощников первым увидел сперматозоиды — маленькие, похожие на головастиков тельца в сперме. Но самое удивительное открытие Левенгук сделал, рассматривая каплю воды из канавы. Он обнаружил в ней мельчайшие создания, обладавшие тем не менее всеми признаками жизни. Эти анималькули (так их назвал Левенгук) теперь известны как простейшие. Таким образом, усовершенствованный микроскоп позволил обнаружить в природе не только мельчайшие объекты, но и микроскопические живые существа. Взгляду пораженных исследователей открылся богатейший неведомый мир. Так было положено начало микробиологии (изучению живых организмов, невидимых невооруженным глазом). В 1683 г. Левенгук обнаружил создания еще мельче простейших. Хотя его описание весьма расплывчато и поэтому не может служить доказательством, вполне вероятно, что Левенгук впервые в истории человечества увидел то, что позднее получило название бактерий. Единственным открытием той эпохи, которое могло сравниться с исследованиями Левенгука, по крайней мере по его значимости для будущих исследований, было открытие английского ученого Роберта Гука (1635–1703). Усовершенствования, внесенные им в микроскоп, позволили выполнить ряд тонких научных экспериментов. В 1665 г. он опубликовал книгу «Микрография», в которой можно найти великолепные зарисовки микроскопических объектов. Наибольший интерес представляло изучение строения пробки, показавшее, что она состоит из массы маленьких прямоугольных камер, названных Гуком клетками. Это открытие имело важные последствия. В течение XVIII в. микроскопия переживала период упадка: эффективность прибора достигла предела. Лишь в 1773 г., почти через 100 лет после первых наблюдений Левенгука, датскому зоологу Отто Фредерику Мюллеру (1730–1784) удалось настолько хорошо рассмотреть бактерии, что он смог описать очертания и формы нескольких из них. Один из недостатков ранних микроскопов заключался в том, что в линзах происходило разложение белого света на составляющие цвета. Небольшие предметы были окружены цветными кольцами (так называемая хроматическая аберрация), и поэтому мелкие детали трудно было разобрать. Примерно в 1820 г. был изобретен ахроматический микроскоп, не дававший цветных колец. Этим объясняется тот факт, что именно в XIX столетии микроскоп помог проложить путь к новым удивительным достижениям в биологии. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх |
||||
|